skip to main content


Search for: All records

Award ID contains: 2039985

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification ofMACλof the standard mixture and of a multi‐component environmental sample.

     
    more » « less
  2. Abstract. Indole (ind) is a nitrogen-containing heterocyclic volatile organic compound commonly emitted from animal husbandry and from different plants like maize with global emissions of 0.1 Tg yr−1. The chemical composition and optical properties of indole secondary organic aerosol (SOA) and brown carbon (BrC) are still not well understood. To address this, environmental chamber experiments were conducted to investigate the oxidation of indole at atmospherically relevant concentrations of selected oxidants (OH radicals and O3) with or without NO2. In the presence of NO2, the SOA yields decreased by more than a factor of 2, but the mass absorption coefficient at 365 nm (MAC365) of ind-SOA was 4.3 ± 0.4 m2 g−1, which was 5 times higher than that in experiments without NO2. In the presence of NO2, C8H6N2O2 (identified as 3-nitroindole) contributed 76 % to all organic compounds detected by a chemical ionization mass spectrometer, contributing ∼ 50 % of the light absorption at 365 nm (Abs365). In the absence of NO2, the dominating chromophore was C8H7O3N, contributing to 20 %–30 % of Abs365. Indole contributes substantially to the formation of secondary BrC and its potential impact on the atmospheric radiative transfer is further enhanced in the presence of NO2, as it significantly increases the specific light absorption of ind-SOA by facilitating the formation of 3-nitroindole. This work provides new insights into an important process of brown carbon formation by interaction of two pollutants, NO2 and indole, mainly emitted by anthropogenic activities.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available December 21, 2024
  4. Atmospheric aging through diverse reaction pathways modifies redox potential and composition of organic aerosols, leading to varied dynamic behaviors of aerosols in the respiratory system and endpoint toxic results.

     
    more » « less
    Free, publicly-accessible full text available December 7, 2024
  5. Free, publicly-accessible full text available June 3, 2024
  6. Free, publicly-accessible full text available May 16, 2024
  7. Iron (Fe) is ubiquitous in nature and found as Fe II or Fe III in minerals or as dissolved ions Fe 2+ or Fe 3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of Fe III into natural aquatic systems, organic carboxylic acids efficiently chelate Fe III to form [Fe III –carboxylate] 2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of Fe III –carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of Fe III –citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of ( φ ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe 3+ –citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j 1 ∼ 0.12 min −1 and j 2 ∼ 0.05 min −1 , respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe–organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe–carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of Fe III –citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments. 
    more » « less