skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Canopy Temperature Reveals Disparities in Urban Tree Benefits
Abstract Urban trees are increasingly used by cities for cooling and climate adaptation. However, efforts to increase tree cover across cities have neglected to account for the trees' health and function, which are known to control their associated environmental benefits but have been difficult to assess at scales relevant for management. Here, we use remotely sensed, high resolution canopy temperature as a proxy for tree health and function and evaluate its relation to the built environment across Minneapolis‐St. Paul (MSP) using machine learning analyses. We develop a new index that incorporates information on urban trees' health and function, in addition to their presence. This index, when applied across MSP, suggests that canopy benefits may not be distributed equally even in neighborhoods with similar canopy cover. Furthermore, accounting for tree health and function can yield more effective and equitable benefits by guiding the location and magnitude of intervention for urban tree management.  more » « less
Award ID(s):
2045382
PAR ID:
10570990
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
6
Issue:
1
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Urban tree canopy cover is often unequally distributed across cities such that more socially vulnerable neighborhoods often have lower tree canopy cover than less socially vulnerable neighborhoods. However, how the diversity and composition of the urban canopy affect the nature of social‐ecological benefits (and burdens), including the urban forest's vulnerability to climate change, remains underexamined. Here, we synthesize tree inventories developed by multiple organizations and present a species‐specific, geolocated database of more than 600,000 urban trees across the 7‐county Minneapolis‐St. Paul (MSP) metropolitan area in the Upper Midwest of the United States. We find that tree diversity across the MSP is variable yet dominated by a few species (e.g.,Fraxinus pennsylvanica,Acer platanoides, andGleditsia triacanthos), contributing to the vulnerability of the MSP urban forest to future climate change and disturbances. In contrast to tree canopy cover, tree diversity was not well predicted by socioeconomic or demographic factors. However, our analysis identified areas where both climate and social vulnerability are high. Our results add to a growing body of literature emphasizing the importance of considering how complex and interacting social and ecological factors drive urban forest diversity and composition when pursuing management objectives. 
    more » « less
  2. Sustainable cities depend on urban forests. City trees—pillars of urban forests—improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset ofN= 5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., “native”). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., “native” trees) comprise 0.51–87.4% (median = 45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees alongside sociodemographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees. 
    more » « less
  3. null (Ed.)
    Many of the world’s major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics. 
    more » « less
  4. Abstract Redlining was a racially discriminatory housing policy established by the federal government’s Home Owners’ Loan Corporation (HOLC) during the 1930s. For decades, redlining limited access to homeownership and wealth creation among racial minorities, contributing to a host of adverse social outcomes, including high unemployment, poverty, and residential vacancy, that persist today. While the multigenerational socioeconomic impacts of redlining are increasingly understood, the impacts on urban environments and ecosystems remain unclear. To begin to address this gap, we investigated how the HOLC policy administered 80 years ago may relate to present-day tree canopy at the neighborhood level. Urban trees provide many ecosystem services, mitigate the urban heat island effect, and may improve quality of life in cities. In our prior research in Baltimore, MD, we discovered that redlining policy influenced the location and allocation of trees and parks. Our analysis of 37 metropolitan areas here shows that areas formerly graded D, which were mostly inhabited by racial and ethnic minorities, have on average ~23% tree canopy cover today. Areas formerly graded A, characterized by U.S.-born white populations living in newer housing stock, had nearly twice as much tree canopy (~43%). Results are consistent across small and large metropolitan regions. The ranking system used by Home Owners’ Loan Corporation to assess loan risk in the 1930s parallels the rank order of average percent tree canopy cover today. 
    more » « less
  5. Our goal in this paper is to examine whether there are similar patterns in the distribution of tree canopy by Home Owners’ Loan Corporation (HOLC) graded neighborhoods across 37 cities. A pre-print of the paper can be found here: https://osf.io/preprints/socarxiv/97zcs This data packages contains: 1. City-specific file geodatabases with features classes of the HOLC polygons obtained from the Mapping Inequality Project https://dsl.richmond.edu/panorama/redlining/, and tables summarizing tree canopy, and in some cases other land cover classes. 2. An *.R script that replicates all of the analyses, graphs, and tables in the paper. Other double checks, exploratory, and miscellaneous outputs are created by the script too as a bonus. Everything in the paper can be done with the script; additional work outputs are also created. 3. A *.csv file containing city, the HOLC grade, and the percent tree canopy cover. This can be used to create the main findings of the paper and this flat file is provided as an alternative to running the R script to extract information from the geodatabases, combine, and analyze them. The intention is that this file is more widely accessible; the underlying information is the same. Redlining was a racially discriminatory housing policy established by the federal government’s Home Owners’ Loan Corporation (HOLC) during the 1930s. For decades, redlining limited access to homeownership and wealth creation among racial minorities, contributing to a host of adverse social outcomes, including high unemployment, poverty, and residential vacancy, that persist today. While the multigenerational socioeconomic impacts of redlining are increasingly understood, the impacts on urban environments and ecosystems remains unclear. To begin to address this gap, we investigated how the HOLC policy administered 80 years ago may relate to present-day tree canopy at the neighborhood level. Urban trees provide many ecosystem services, mitigate the urban heat island effect, and may improve quality of life in cities. In our prior research in Baltimore, MD, we discovered that redlining policy influenced the location and allocation of trees and parks. Our analysis of 37 metropolitan areas here shows that areas formerly graded D, which were mostly inhabited by racial and ethnic minorities, have on average ~23% tree canopy cover today. Areas formerly graded A, characterized by U.S.-born white populations living in newer housing stock, had nearly twice as much tree canopy (~43%). Results are consistent across small and large metropolitan regions. The ranking system used by Home Owners’ Loan Corporation to assess loan risk in the 1930s parallels the rank order of average percent tree canopy cover today. 
    more » « less