skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolution and Potential Subfunctionalization of Duplicated fms -Related Class III Receptor Tyrosine Kinase flt3 s and Their Ligands in the Allotetraploid Xenopus laevis
Abstract The fms-related tyrosine kinase 3 (Flt3) and its ligand (Flt3lg) are important regulators of hematopoiesis and dendritic cell (DC) homeostasis with unsettled coevolution. Gene synteny and deduced amino acid sequence analyses identified conserved flt3 gene orthologs across all jawed vertebrates. In contrast, flt3lg orthologs were not retrieved in ray-finned fish, and the gene locus exhibited more variability among species. Interestingly, duplicated flt3/flt3lg genes were maintained in the allotetraploid Xenopus laevis. Comparison of modeled structures of X. laevis Flt3 and Flt3lg homoeologs with the related diploid Xenopus tropicalis and with humans indicated a higher conformational divergence between the homoeologous pairs than their respective counterparts. The distinctive developmental and tissue expression patterns of Flt3 and Flt3lg homoeologs in tadpoles and adult frogs suggest a subfunctionalization of these homoeologs. To characterize Flt3 cell surface expression, X. laevis–tagged rFlt3lg.S and rFlt3lg.L were produced. Both rFlt3lg.S and rFlt3lg.L bind in vitro Flt3.S and Flt3.L and can trigger Erk1/2 signaling, which is consistent with a partial overlapping function between homoeologs. In spleen, Flt3.S/L cell surface expression was detected on a fraction of B cells and a population of MHC class IIhigh/CD8+ leukocytes phenotypically similar to the recently described dual follicular/conventional DC-like XL cells. Our result suggests that 1) Flt3lg.S and Flt3lg.L are both involved in XL cell homeostasis and that 2) XL cells have hematopoietic origin. Furthermore, we detected surface expression of the macrophage/monocyte marker Csf1r.S on XL cells as in mammalian and chicken DCs, which points to a common evolutionary origin in vertebrate DCs.  more » « less
Award ID(s):
1754274
PAR ID:
10571002
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The Journal of Immunology
Volume:
209
Issue:
5
ISSN:
0022-1767
Format(s):
Medium: X Size: p. 960-969
Size(s):
p. 960-969
Sponsoring Org:
National Science Foundation
More Like this
  1. Macrophage (Mϕ)-lineage cells are integral to the immune defences of all vertebrates, including amphibians. Across vertebrates, Mϕdifferentiation and functionality depend on activation of the colony stimulating factor-1 (CSF1) receptor by CSF1 and interluekin-34 (IL34) cytokines. Our findings to date indicate that amphibian (Xenopus laevis) Mϕs differentiated with CSF1 and IL34 are morphologically, transcriptionally and functionally distinct. Notably, mammalian Mϕs share common progenitor population(s) with dendritic cells (DCs), which rely on fms-like tyrosine kinase 3 ligand (FLT3L) for differentiation whileX. laevisIL34-Mϕs exhibit many features attributed to mammalian DCs. Presently, we comparedX. laevisCSF1- and IL34-Mϕs with FLT3L-derivedX. laevisDCs. Our transcriptional and functional analyses indicated that indeed the frog IL34-Mϕs and FLT3L-DCs possessed many commonalities over CSF1-Mϕs, including transcriptional profiles and functional capacities. Compared toX. laevisCSF1-Mϕs, the IL34-Mϕs and FLT3L-DCs possess greater surface major histocompatibility complex (MHC) class I, but not MHC class II expression, were better at eliciting mixed leucocyte responsesin vitroand generatingin vivore-exposure immune responses againstMycobacterium marinum. Further analyses of non-mammalian myelopoiesis akin to those described here, will grant unique perspectives into the evolutionarily retained and diverged pathways of Mϕand DC functional differentiation. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less
  2. Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells. 
    more » « less
  3. Synopsis Evolutionary increases in genome size, cell volume, and nuclear volume have been observed across the tree of life, with positive correlations documented between all three traits. Developmental tempo slows as genomes, nuclei, and cells increase in size, yet the driving mechanisms are poorly understood. To bridge this gap, we use a mathematical model of the somitogenesis clock to link slowed developmental tempo with changes in intra-cellular gene expression kinetics induced by increasing genome size and nuclear volume. We adapt a well-known somitogenesis clock model to two model amphibian species that vary 10-fold in genome size: Xenopus laevis (3.1 Gb) and Ambystoma mexicanum (32 Gb). Based on simulations and backed by analytical derivations, we identify parameter changes originating from increased genome and nuclear size that slow gene expression kinetics. We simulate biological scenarios for which these parameter changes mathematically recapitulate slowed gene expression in A. mexicanum relative to X. laevis, and we consider scenarios for which additional alterations in gene product stability and chromatin packing are necessary. Results suggest that slowed degradation rates as well as changes induced by increasing nuclear volume and intron length, which remain relatively unexplored, are significant drivers of slowed developmental tempo. 
    more » « less
  4. The diploid anuran Xenopus tropicalis has emerged as a key research model in cell and developmental biology. To enhance the usefulness of this species, we developed methods for generating immortal cell lines from Nigerian strain (NXR_1018, RRID:SCR_013731) X. tropicalis embryos. We generated 14 cell lines that were propagated for several months. We selected four morphologically distinct lines, XTN-6, XTN-8, XTN-10 and XTN-12 for further characterization. Karyotype analysis revealed that three of the lines, XTN-8, XTN-10 and XTN-12 were primarily diploid. XTN-6 cultures showed a consistent mixed population of diploid cells, cells with chromosome 8 trisomy, and cells containing a tetraploid content of chromosomes. The lines were propagated using conventional culture methods as adherent cultures at 30°C in a simple, diluted L-15 medium containing fetal bovine serum without use of a high CO 2 incubator. Transcriptome analysis indicated that the four lines were distinct lineages. These methods will be useful in the generation of cell lines from normal and mutant strains of X. tropicalis as well as other species of Xenopus . 
    more » « less
  5. Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response. 
    more » « less