Abstract Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have suggested that shoulders are supported by loopedx1orbits, occur in growing bars, and can appear after bar buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after being vertically thickened. We show that looped orbits appear at the resonance ( Ωφ− ΩP)/ΩR= 1/2 (analogous to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios 1 ≲ Ωz/ΩR≲ 3/2 (verticallywarmorbits).Coolorbits at the ILR (those with Ωz/ΩR> 3/2) are vertically thin and have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR, ( Ωφ− ΩP)/Ωz= 1/2], where they convert in-plane motion to vertical motion, become chaotic, kinematically hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders likely precede the emergence of BP-bulges. The python module for the frequency analysis,naif, is made available.
more »
« less
Distinct genetic origins of eumelanin levels and barring patterns in cichlid fishes
Pigment patterns are incredibly diverse across vertebrates and are shaped by multiple selective pressures from predator avoidance to mate choice. A common pattern across fishes, but for which we know little about the underlying mechanisms, is repeated melanic vertical bars. To understand the genetic factors that modify the level or pattern of vertical barring, we generated a genetic cross of 322 F2hybrids between two cichlid species with distinct barring patterns,Aulonocara koningsiandMetriaclima mbenjii. We identify 48 significant quantitative trait loci that underlie a series of seven phenotypes related to the relative pigmentation intensity, and four traits related to patterning of the vertical bars. We find that genomic regions that generate variation in the level of eumelanin produced are largely independent of those that control the spacing of vertical bars. Candidate genes within these intervals include novel genes and those newly-associated with vertical bars, which could affect melanophore survival, fate decisions, pigment biosynthesis, and pigment distribution. Together, this work provides insights into the regulation of pigment diversity, with direct implications for an animal’s fitness and the speciation process.
more »
« less
- Award ID(s):
- 1942178
- PAR ID:
- 10571024
- Editor(s):
- Palsson, Arnar
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 7
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0306614
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which multiple species share the same conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which vivid colour and pattern are produced in a Müllerian mimicry complex of poison frogs. We did this by first assembling a high‐qualityde novogenome assembly for the mimic poison frogRanitomeya imitator. This assembled genome is 6.8 Gbp in size, with a contig N50 of 300 KbpR. imitatorand two colour morphs from bothRanitomeya fantasticaandR. variabiliswhichR. imitatormimics. We identified a large number of pigmentation and patterning genes that are differentially expressed throughout development, many of them related to melanocyte development, melanin synthesis, iridophore development and guanine synthesis. Polytypic differences within species may be the result of differences in expression and/or timing of expression, whereas convergence for colour pattern between species does not appear to be due to the same changes in gene expression. In addition, we identify the pteridine synthesis pathway (including genes such asqdprandxdh) as a key driver of the variation in colour between morphs of these species. Finally, we hypothesize that genes in the keratin family are important for producing different structural colours within these frogs.more » « less
-
The structure and function of biochemical and developmental pathways determine the range of accessible phenotypes, which are the substrate for evolutionary change. Accordingly, we expect that observed phenotypic variation across species is strongly influenced by pathway structure, with different phenotypes arising due to changes in activity along pathway branches. Here, we use flower colour as a model to investigate how the structure of pigment pathways shapes the evolution of phenotypic diversity. We focus on the phenotypically diverse Petunieae clade in the nightshade family, which containsca180 species ofPetuniaand related genera, as a model to understand how flavonoid pathway gene expression maps onto pigment production. We use multivariate comparative methods to estimate co-expression relationships between pathway enzymes and transcriptional regulators, and then assess how expression of these genes relates to the major axes of variation in floral pigmentation. Our results indicate that coordinated shifts in gene expression predict transitions in both total anthocyanin levels and pigment type, which, in turn, incur trade-offs with the production of UV-absorbing flavonol compounds. These findings demonstrate that the intrinsic structure of the flavonoid pathway and its regulatory architecture underlies the accessibility of pigment phenotypes and shapes evolutionary outcomes for floral pigment production.more » « less
-
Summary Pollination syndromes are a key component of flowering plant diversification, prompting questions about the architecture of single traits and genetic coordination among traits. Here, we investigate the genetics of extreme floral divergence between naturally hybridizing monkeyflowers,Mimulus parishii(self‐pollinated) andM. cardinalis(hummingbird‐pollinated).We mapped quantitative trait loci (QTLs) for 18 pigment, pollinator reward/handling, and dimensional traits in parallel sets of F2hybrids plus recombinant inbred lines and generated nearly isogenic lines (NILs) for two dimensional traits, pistil length and corolla size.Our multi‐population approach revealed a highly polygenic basis (n = 190 QTLs total) for pollination syndrome divergence, capturing minor QTLs even for pigment traits with leading major loci. There was significant QTL overlap within pigment and dimensional categories. Nectar volume QTLs clustered with those for floral dimensions, suggesting a partially shared module. The NILs refined two pistil length QTLs, only one of which has tightly correlated effects on other dimensional traits.An overall polygenic architecture of floral divergence is partially coordinated by genetic modules formed by linkage (pigments) and likely pleiotropy (dimensions plus nectar). This work illuminates pollinator syndrome diversification in a model radiation and generates a robust framework for molecular and ecological genomics.more » « less
-
Abstract Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry inPapilioswallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene,doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option ofdsxas a mimicry locus, and that evolutionary turnover ofdsxalleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages.more » « less
An official website of the United States government

