skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Attention in Category Representation
Abstract Numerous studies have found that selective attention affects category learning. However, previous research did not distinguish between the contribution of focusing and filtering components of selective attention. This study addresses this issue by examining how components of selective attention affect category representation. Participants first learned a rule‐plus‐similarity category structure, and then were presented with category priming followed by categorization and recognition tests. Additionally, to evaluate the involvement of focusing and filtering, we fit models with different attentional mechanisms to the data. In Experiment 1, participants received rule‐based category training, with specific emphasis on a single deterministic feature (D feature). Experiment 2 added a recognition test to examine participants’ memory for features. Both experiments indicated that participants categorized items based solely on the D feature, showed greater memory for the D feature, were primed exclusively by the D feature without interference from probabilistic features (P features), and were better fit by models with focusing and at least one type of filtering mechanism. The results indicated that selective attention distorted category representation by highlighting the D feature and attenuating P features. To examine whether the distorted representation was specific to rule‐based training, Experiment 3 introduced training, emphasizing all features. Under such training, participants were no longer primed by the D feature, they remembered all features well, and they were better fit by the model assuming only focusing but no filtering process. The results coupled with modeling provide novel evidence that while both focusing and filtering contribute to category representation, filtering can also result in representational distortion.  more » « less
Award ID(s):
1847603
PAR ID:
10571042
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley Periodicals LLC
Date Published:
Journal Name:
Cognitive Science
Volume:
48
Issue:
4
ISSN:
0364-0213
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Models of human categorization predict the prefrontal cortex (PFC) serves a central role in category learning. The dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) have been implicated in categorization; however, it is unclear whether both are critical for categorization and whether they support unique functions. We administered three categorization tasks to patients with PFC lesions (mean age, 69.6 years; 5 men, 5 women) to examine how the prefrontal subregions contribute to categorization. These included a rule-based (RB) task that was solved via a unidimensional rule, an information integration (II) task that was solved by combining information from two stimulus dimensions, and a deterministic/probabilistic (DP) task with stimulus features that had varying amounts of category-predictive information. Compared with healthy comparison participants, both patient groups had impaired performance. Impairments in the dlPFC patients were largest during the RB task, whereas impairments in the vmPFC patients were largest during the DP task. A hierarchical model was fit to the participants’ data to assess learning deficits in the patient groups. PFC damage was correlated with a regularization term that limited updates to attention after each trial. Our results suggest that the PFC, as a whole, is important for learning to orient attention to relevant stimulus information. The dlPFC may be especially important for rule-based learning, whereas the vmPFC may be important for focusing attention on deterministic (highly diagnostic) features and ignoring less predictive features. These results support overarching functions of the dlPFC in executive functioning and the vmPFC in value-based decision-making. 
    more » « less
  2. In recent years, remarkable results have been achieved in self-supervised action recognition using skeleton sequences with contrastive learning. It has been observed that the semantic distinction of human action features is often represented by local body parts, such as legs or hands, which are advantageous for skeleton-based action recognition. This paper proposes an attention-based contrastive learning framework for skeleton representation learning, called SkeAttnCLR, which integrates local similarity and global features for skeleton-based action representations. To achieve this, a multi-head attention mask module is employed to learn the soft attention mask features from the skeletons, suppressing non-salient local features while accentuating local salient features, thereby bringing similar local features closer in the feature space. Additionally, ample contrastive pairs are generated by expanding contrastive pairs based on salient and non-salient features with global features, which guide the network to learn the semantic representations of the entire skeleton. Therefore, with the attention mask mechanism, SkeAttnCLR learns local features under different data augmentation views. The experiment results demonstrate that the inclusion of local feature similarity significantly enhances skeleton-based action representation. Our proposed SkeAttnCLR outperforms state-of-the-art methods on NTURGB+D, NTU120-RGB+D, and PKU-MMD datasets. The code and settings are available at this repository: https://github.com/GitHubOfHyl97/SkeAttnCLR. 
    more » « less
  3. Abstract Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry of color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience. 
    more » « less
  4. Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features. 
    more » « less
  5. Categorization has a deep impact on behavior, but whether category learning is served by a single system or multiple systems remains debated. Here, we designed two well-equated nonspeech auditory category learning challenges to draw on putative procedural (information-integration) versus declarative (rule-based) learning systems among adult Hebrew-speaking control participants and individuals with dyslexia, a language disorder that has been linked to a selective disruption in the procedural memory system and in which phonological deficits are ubiquitous. We observed impaired information-integration category learning and spared rule-based category learning in the dyslexia group compared with the neurotypical group. Quantitative model-based analyses revealed reduced use of, and slower shifting to, optimal procedural-based strategies in dyslexia with hypothesis-testing strategy use on par with control participants. The dissociation is consistent with multiple category learning systems and points to the possibility that procedural learning inefficiencies across categories defined by complex, multidimensional exemplars may result in difficulty in phonetic category acquisition in dyslexia. 
    more » « less