skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: melt : Multiple Empirical Likelihood Tests in R
Award ID(s):
1921523
PAR ID:
10571062
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Statistical Software
Date Published:
Journal Name:
Journal of Statistical Software
Volume:
108
Issue:
5
ISSN:
1548-7660
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur. 
    more » « less
  2. We recently proposed a semi-stochastic approach to converging high-level coupled-cluster (CC) energetics, such as those obtained in the CC calculations with singles, doubles, and triples (CCSDT), in which the deterministic CC(P;Q) framework is merged with the stochastic configuration interaction Quantum Monte Carlo propagations [J. E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]. In this work, we investigate the ability of the semi-stochastic CC(P;Q) methodology to recover the CCSDT energies of the lowest singlet and triplet states and the corresponding singlet–triplet gaps of biradical systems using methylene, (HFH)−, cyclobutadiene, cyclopentadienyl cation, and trimethylenemethane as examples. 
    more » « less
  3. Mesoporous polyetherimides are important high-performance polymers. Conventional strategies to prepare porous polyetherimides, and polyimide in general, are based on covalent organic framework or thermolysis of sacrificial polymers. The former produces micropores due to intrinsically crosslinked microstructures, and the latter results in macropores because of a blowing effect by the sacrificial polymers. The preparation of mesopores remains a challenge. Here we have prepared mesoporous polyetherimide films by hydrolyzing polylactide- b -polyetherimide- b -polylactide (AIA). Controlled by molecular weight and volume fraction of polylactide in AIA, the porous films exhibit an average pore width of 24 nm. The mesoporous polyetherimide films exhibit a storage modulus of ∼1 GPa at ambient temperatures. This work advances the chemistry of high-performance polymers and provides an alternative strategy to prepare mesoporous polymers, enabling potential use as high-performance membranes for separation, purification, and electrochemistry. 
    more » « less