skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 4, 2025

Title: Polyuniverse: generation of a large-scale polymer library using rule-based polymerization reactions for polymer informatics
We collected extensive small molecule compounds from GDB-17, GDB-13, and PubChem and selected polymerization reaction pathways for eight types of polymers, to generate hundreds of quadrillions of hypothetical polymer structures.  more » « less
Award ID(s):
2332276
PAR ID:
10571092
Author(s) / Creator(s):
; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Digital Discovery
Volume:
3
Issue:
12
ISSN:
2635-098X
Page Range / eLocation ID:
2465 to 2478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of postoperative epithelial‐mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 3‐methacryloxypropyl tris(trimethylsiloxy)silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α‐smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO. 
    more » « less
  2. Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement. 
    more » « less
  3. Abstract The advancement of new‐generation complex integrated responsive systems depends on the progress in the development of functional stimuli‐responsive polymer components that could be put together and engineered to perform in concert as an ensemble. This progress report highlights recent substantial progress in the development of such soft‐matter components capable of changes according to preprogrammed scenarios. The components interact via interfaces that play a key role in the performance of the microstructured materials. The list of the most important properties that can be changed by altering the interfaces upon external stimuli includes gating, transport, release, wetting, adhesion, and self‐regeneration (healing) realized in different architectures of soft stimuli‐responsive materials. 
    more » « less
  4. The present review provides both a summary and outlook on the exciting field of BODIPYs in polymer chemistry. 
    more » « less
  5. Abstract Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios. 
    more » « less