Lanthanides (Ln) are a new group of life metals, and many questions remain regarding how they are acquired and used in biology. Methylotrophic bacteria can acquire, transport, biomineralize, and use Ln as part of a cofactor complex with pyrroloquinoline quinone (PQQ) in alcohol dehydrogenases. For most methylotrophic bacteria use is restricted to the light Ln, which range from lanthanum to samarium (atomic numbers 57–62). Understanding how the cell differentiates between light and heavy Ln, and the impacts of these metals on the metabolic network, will advance the field of Ln biochemistry and give insights into enzyme catalysis, stress homeostasis, and metal biomineralization and compartmentalization. We report robust methanol growth with the heavy Ln gadolinium by a genetic variant of the model methylotrophic bacterium Methylorubrum extorquens AM1, named evo -HLn, for “ evo lved for H eavy L antha n ides.” A non-synonymous single nucleotide polymorphism in a cytosolic hybrid histidine kinase/response regulator allowed for sweeping transcriptional alterations to heavy metal stress response, methanol oxidation, and central metabolism. Increased expression of genes for Ln acquisition and uptake, production of the Ln-chelating lanthanophore, PQQ biosynthesis, and phosphate transport and metabolism resulted in gadolinium hyperaccumulation of 36-fold with a trade-off for light Ln accumulation. Gadolinium was hyperaccumulated in an enlarged acidocalcisome-like compartment. This is the first evidence of a bacterial intracellular Ln-containing compartment that we name the “lanthasome.” Carotenoid and toblerol biosynthesis were also upregulated. Due to its unique capabilities, evo -HLn can be used to further magnetic resonance imaging (MRI) and bioremediation technologies. In this regard, we show that gadolinium hyperaccumulation was sufficient to produce MRI contrast in whole cells, and that evo -HLn was able to readily acquire the metal from the MRI contrast agent gadopentetic acid. Finally, hyperaccumulation of gadolinium, differential uptake of light and heavy Ln, increased PQQ levels, and phosphate transport provide new insights into strategies for Ln recovery.
more »
« less
Identification and characterization of a small-molecule metallophore involved in lanthanide metabolism
Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.
more »
« less
- Award ID(s):
- 2127732
- PAR ID:
- 10571093
- Publisher / Repository:
- National Academy of Science
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences of the United States of America
- ISSN:
- 1091-6490
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal-metal bonding interactions can engender outstanding magnetic properties in bulk materials and molecules, and examples abound for the transition metals. Extending this paradigm to the lanthanides, herein we report mixed-valence dilanthanide complexes (Cp iPr5 ) 2 Ln 2 I 3 (Ln is Gd, Tb, or Dy; Cp i Pr5 , pentaisopropylcyclopentadienyl), which feature a singly occupied lanthanide-lanthanide σ-bonding orbital of 5 d z 2 parentage, as determined by structural, spectroscopic, and computational analyses. Valence delocalization, wherein the d electron is equally shared by the two lanthanide centers, imparts strong parallel alignment of the σ-bonding and f electrons on both lanthanides according to Hund’s rules. The combination of a well-isolated high-spin ground state and large magnetic anisotropy in (Cp iPr5 ) 2 Dy 2 I 3 gives rise to an enormous coercive magnetic field with a lower bound of 14 tesla at temperatures as high as 60 kelvin.more » « less
-
Despite the importance of bulk lanthanide borides, nanoclusters of lanthanide and boron have rarely been investigated. Here we show that lanthanide–boron binary clusters, La 2 B x − , can form a new class of inverse-sandwich complexes, [Ln(η x -B x )Ln] − ( x = 7–9). Joint experimental and theoretical studies reveal that the monocyclic B x rings in the inverse sandwiches display similar bonding, consisting of three delocalized σ and three delocalized π bonds. Such monocyclic boron rings do not exist for bare boron clusters, but they are stabilized by the sandwiching lanthanide atoms. An electron counting rule is proposed to predict the sizes of the B x ring that can form stable inverse sandwiches. A unique (d-p)δ bond is found to play important roles in the stability of all three inverse-sandwich complexes.more » « less
-
This chapter describes a personal journey through the periodic table in which an undergraduate starting research in boron hydride chemistry developed into a professorial researcher in rare earth chemistry. The chapter details how the periodic table became a career guide through connections and developments that led the boron chemist into the rare earth field. Also presented is the evolution of reductive rare-earth chemistry which started with just a few +2 lanthanide ions, Eu(II), Yb(II), and Sm(II), and now extends to +2 ions for all the rare earth metals, i.e. Sc, Y, and the lanthanides, La-Lu. The special reactivity of Sm(II), which led to the first lanthanide-based dinitrogen reduction is described, as well as the rare earth dinitrogen reduction that led to the new Ln(II) ions. Periodic trends in these developments are discussed and speculation on the future of the rare-earth elements in terms of periodic properties is also presented.more » « less
-
The unique properties of the lanthanide (Ln) elements make them critical components of modern technologies, such as lasers, anti-corrosive films and catalysts. Thus, there is significant interest in establishing structure–property relationships for Ln-containing materials to advance these technologies. Extended X-ray absorption fine structure (EXAFS) is an excellent technique for this task considering its ability to determine the average local structure around the Ln atoms for both crystalline and amorphous materials. However, the limited availability of EXAFS reference spectra of the Ln oxides and challenges in the EXAFS analysis have hindered the application of this technique to these elements. The challenges include the limitedk-range available for the analysis due to the superposition ofL-edges on the EXAFS, multielectron excitations (MEEs) creating erroneous peaks in the EXAFS and the presence of inequivalent absorption sites. Herein, we removed MEEs to model the local atomic environment more accurately for light Ln oxides. Further, we investigated the use of cubic and non-cubic lattice expansion to minimize the fitting parameters needed and connect the fitting parameters to physically meaningful crystal parameters. The cubic expansion reduced the number of fitting parameters but resulted in a statistically worse fit. The non-cubic expansion resulted in a similar quality fit and showed non-isotropic expansion in the crystal lattice of Nd2O3. In total, the EXAFS spectra and the fits for the entire set of Ln oxides (excluding promethium) are included. The knowledge developed here can assist in the structural determination of a wide variety of Ln compounds and can further studies on their structure–property relationships.more » « less
An official website of the United States government

