skip to main content

This content will become publicly available on January 14, 2023

Title: Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding
Metal-metal bonding interactions can engender outstanding magnetic properties in bulk materials and molecules, and examples abound for the transition metals. Extending this paradigm to the lanthanides, herein we report mixed-valence dilanthanide complexes (Cp iPr5 ) 2 Ln 2 I 3 (Ln is Gd, Tb, or Dy; Cp i Pr5 , pentaisopropylcyclopentadienyl), which feature a singly occupied lanthanide-lanthanide σ-bonding orbital of 5 d z 2 parentage, as determined by structural, spectroscopic, and computational analyses. Valence delocalization, wherein the d electron is equally shared by the two lanthanide centers, imparts strong parallel alignment of the σ-bonding and f electrons on both lanthanides according to Hund’s rules. The combination of a well-isolated high-spin ground state and large magnetic anisotropy in (Cp iPr5 ) 2 Dy 2 I 3 gives rise to an enormous coercive magnetic field with a lower bound of 14 tesla at temperatures as high as 60 kelvin.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Lanthanide (Ln) elements are generally found in the oxidation state +II or +III, and a few examples of +IV and +V compounds have also been reported. In contrast, monovalent Ln(+I) complexes remain scarce. Here we combine photoelectron spectroscopy and theoretical calculations to study Ln-doped octa-boron clusters (LnB8, Ln = La, Pr, Tb, Tm, Yb) with the rare +I oxidation state. The global minimum of the LnB8species changes fromCstoC7vsymmetry accompanied by an oxidation-state change from +III to +I from the early to late lanthanides. All theC7v-LnB8clusters can be viewed as a monovalent Ln(I) coordinated by a η8-B82−doubly aromatic ligand. The B73−, B82−, and B9series of aromatic boron clusters are analogous to the classical aromatic hydrocarbon molecules, C5H5, C6H6, and C7H7+, respectively, with similar trends of size and charge state and they are named collectively as “borozenes”. Lanthanides with variable oxidation states and magnetic properties may be formed with different borozenes.

  2. The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89 Y ( I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim 3− ˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp* 2 Y) 2 (μ-Bbim˙)] is provided. Access of Bbim 3− ˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim 2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim 2− (1) and Bbim 3− ˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vismore »spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim 2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim 3− ˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim 3− ˙ an ideal candidate for single-molecule magnet design.« less
  3. Four tripodal carbamoylmethylphosphine oxide (CMPO)-based ligands are reported here and assessed with regard to lanthanide (Ln) coordination chemistry and selective extraction of lanthanide ions from aqueous solution. Inspired by previous liquid–liquid extraction studies that suggested a preference for terbium( iii ), the current work further probes the extraction behavior of a tris-(2-aminoethyl)amine (TREN) capped, ethoxy substituted CMPO ligand with respect to the entire series of lanthanides. Upon confirmation of Tb 3+ extraction selectivity versus the whole series, experiments were conducted to assess the effect of increasing the alkyl chain length within the ligand TREN cap, as well as changing the CMPO substituents by replacing the ethoxy groups with more hydrophobic phenyl groups to promote solubility in the organic extraction solvent. Extraction efficiencies remained low for most lanthanides upon increasing the cap size, with % E values consistently around 5%, and a complete loss of Tb 3+ preference was noted with a decrease in % E from 18% to 3.5%. For the agent employing the original, smaller TREN cap but with phenyl substituents on the CMPO units, an increase in extraction toward the middle of the row was again observed, albeit modest, with relatively high % E values for both Gdmore »3+ and Tb 3+ versus the other lanthanides (13 and 11%, respectively). A more dramatic extraction selectivity for the phenyl substituted ligand was achieved upon modification of the ligand to metal ratio, with a 100 : 1 ratio resulting in a near linear decrease in % E from 41% for La 3+ to 3.7% for Lu 3+ . Finally, modification of the TREN capping scaffold by adding an oxygen atom to the central nitrogen led to consistently low % E values, revealing the effect of TREN cap oxidation on Ln extraction for this tripodal CMPO ligand system.« less
  4. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′more »3 Ln compounds.« less
  5. The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT) 3 (THF) 3 ] (Ln( iii ) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P 2 1 / c space group with a slight compression of the unit cell from 3396.4(2) Å 3 to 3373.2(4) Å 3 along the series. All complexes exhibit a triple-decker structure having the Ln( iii ) and K( i ) ions sandwiched by three COT 2− ligands with an end-bound {Ca 2+ (THF) 3 } moiety to form a non-linear (153.5°) arrangement of three different metals. The COT 2− ligands act in a η 8 -mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K( i ) and Ca( ii ) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln( iii ) ions. The magnetic property investigationmore »of the [LnKCa(COT) 3 (THF) 3 ] series (Ln( iii ) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT) 3 (THF) 3 ] in contrast to [ErKCa(COT) 3 (THF) 3 ], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations.« less