skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Birds in arid regions have depauperate louse communities: Climate change implications?
Abstract Environmental factors such as temperature and humidity influence the distribution of free‐living organisms. As climates change, the distributions of these organisms change along with their associated parasites, mutualists and commensals. Less studied, however, is the possibility that environmental conditions may directly influence the distribution of these symbionts even if the hosts are able to persist in altered environments. Here, we investigate the diversity of parasitic lice (Insecta: Phthiraptera) on birds in arid Utah compared to the humid Bahamas. We quantified the parasite loads of 500 birds. We found that the prevalence, abundance and richness of lice was considerably lower among birds in Utah, compared to the Bahamas, despite sampling greater host taxonomic richness in Utah. Our data suggest that as climates change, birds in arid regions will have less diverse louse communities over time, potentially relieving birds of some of the cost of controlling these ectoparasites. Conversely, birds in more humid regions will see an increase in louse diversity, which may require them to invest more time and energy in anti‐parasite defense. Additional research with other ectoparasites of birds and mammals across different environmental conditions is needed to more fully understand how climate change may reshape parasite communities, and how these changes could influence their hosts.  more » « less
Award ID(s):
1901923 1926738
PAR ID:
10571102
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Ecology and Evolution
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
9
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenic climate change is expected to increase the aridity of many regions of the world. Surface water ecosystems are particularly vulnerable to changes in the water-cycle and may suffer adverse impacts in affected regions. To enhance our understanding of how freshwater communities will respond to predicted shifts in water-cycle dynamics, we employed a space for time approach along a natural precipitation gradient on the Texas Coastal Prairie. In the spring of 2017, we conducted surveys of 10 USGS-gauged, wadeable streams spanning a semi-arid to sub-humid rainfall gradient; we measured nutrients, water chemistry, habitat characteristics, benthic macroinvertebrates, and fish communities. Fish diversity correlated positively with precipitation and was negatively correlated with conductivity. Macroinvertebrate diversity peaked within the middle of the gradient. Semi-arid fish and invertebrate communities were dominated by euryhaline and live-bearing taxa. Sub-humid communities contained environmentally sensitive trichopterans and ephemeropterans as well as a variety of predatory fish which may impose top-down controls on primary consumers. These results warn that aridification coincides with the loss of competitive and environmentally sensitive taxa which could yield less desirable community states. 
    more » « less
  2. ABSTRACT Climate change can influence host–parasite dynamics by altering the abundance and distribution of hosts and their parasites as well as the physiology of both parasite and host. While the physiological effects of hosting parasites have been extensively studied in aquatic and laboratory model systems, these dynamics have been much less studied in wild terrestrial vertebrates, such as ectotherms that live in tropical forests. These organisms are particularly vulnerable to climate change because they have limited scope for behavioral buffering of stressful temperatures while already living at body temperatures close to their heat tolerance limits. Thus, it is imperative to understand how parasitism and tolerance to stressful thermal conditions, both of which are changing under climate warming, might interact to shape survival of non-model organisms. We measured heat tolerance and assessed endoparasites and ectoparasites in slender anole lizards (Anolis apletophallus; a lowland tropical forest species from central Panama). We then treated lizards with the antiparasitic drugs ivermectin and praziquantel and measured changes in immune function and heat tolerance compared with an unmanipulated control group. Immune function was not altered by treatment; however, heat tolerance increased in treated lizards. Additionally, higher endoparasite and ectoparasite abundance was associated with lower heat tolerance in a separate set of wild-caught lizards. Our results suggest that increasing environmental temperatures may have especially severe effects on host survival when parasites are present and highlight the need to consider interactions between thermal physiology and host–parasite dynamics when forecasting the responses of tropical animals to climate change. 
    more » « less
  3. Sucking lice are obligate parasites of eutherian mammals and are generally considered to be host-specific parasites. Molecular investigations have found that some current louse taxonomy is incorrect and does not reflect the relationships among families and species. Western chipmunks (23 species of Tamias) and the eastern chipmunk (Tamias striatus) are infested by 2 different species of Hoplopleura sucking lice, Hoplopleura arboricola and Hoplopleura erratica. Hoplopleura arboricola has been found on 19 of 23 western chipmunk species, and H. erratica has only been recorded as a parasite of T. striatus. We investigated the relationships between these chipmunk lice and louse systematic status by supplementing published sequence data with additional sequences and morphological examinations. We estimated phylogenetic relationships using 1,107 coding loci in a maximum-likelihood framework and a species tree approach. In addition to the phylogeny, we calculated raw pairwise distances of the cytochrome oxidase subunit 1 gene (COI) between clades. Both phylogenetic approaches recovered 2 well-supported clades of H. arboricola, 1 of which included H. erratica, suggesting that the 2 louse species are not distinct. Further, examination of louse specimens found no morphological traits that distinguish lice from any of the lineages, including differentiating H. erratica from H. arboricola. The average pairwise distance of COI sequences between the 2 major H. arboricola clades exceeded that of the distances between H. erratica and either of the H. arboricola clades. Based on the genetic similarities and phylogenetic relationships of the lice, it appears that an ancestral louse was associated with western chipmunks and then transferred to the eastern chipmunk. Using the phylogenetic and morphological evidence presented here, Hoplopleura arboricolaKellogg and Ferris, 1915 is relegated to a junior subjective synonym of Hoplopleura erratica (Osborn, 1896). A holotype from the type series is designated for H. erratica. These results suggest a history of chipmunk host species interactions that enabled ectoparasites to disperse between chipmunk species and illustrate the importance of phylogenomic analyses to study species interactions and the history of interspecific associations. 
    more » « less
  4. Mammals host a wide diversity of parasites. Lice, comprising more than 5,000 species, are one group of ectoparasites whose major lineages have a somewhat patchwork distribution across the major groups of mammals. Here we explored patterns in the diversification of mammalian lice by reconstructing a higher-level phylogeny of these lice, leveraging whole genome sequence reads to assemble single-copy orthologue genes across the genome. The evolutionary tree of lice indicated that three of the major lineages of placental mammal lice had a single common ancestor. Comparisons of this parasite phylogeny with that for their mammalian hosts indicated that the common ancestor of elephants, elephant shrews and hyraxes (that is, Afrotheria) was the ancestral host of this group of lice. Other groups of placental mammals obtained their lice via host-switching out of these Afrotherian ancestors. In addition, reconstructions of the ancestral host group (bird versus mammal) for all parasitic lice supported an avian ancestral host, indicating that the ancestor of Afrotheria acquired these parasites via host-switching from an ancient avian host. These results shed new light on the long-standing question of why the major groups of parasitic lice are not uniformly distributed across mammals and reveal the origins of mammalian lice. 
    more » « less
  5. Abstract MyrsideaWaterston is the most diverse genus of chewing lice, primarily parasitizing perching birds (Passeriformes), which is the most speciose avian order.Myrsideaalso parasitize several hosts from non‐passerine groups, including toucans, barbets, woodpeckers (Piciformes) and hummingbirds (Apodiformes). To examine host specificity, host switching and generic limits, we reconstructed a phylogeny of the avian feather louse genusMyrsideausing DNA sequence data from two fragments of the mitochondrial COI gene and a fragment of the nuclear EF‐1α gene for 152Myrsideaspecimens collected from 23 avian host families. Unlike other highly diverse louse genera, only a small proportion ofMyrsideaspecies parasitize more than one host species. We found that host family has significant phylogenetic signal on theMyrsideaphylogeny. These results suggest thatMyrsideais generally highly host‐specific, with some exceptions where host switching is important. We found that there are two separate groups ofMyrsideathat parasitize toucans, and that both are nested withinMyrsideafound on perching birds, suggesting that these toucan ectoparasites may have arisen from two independent host switching events. Lastly, representatives of the genusRamphasticolaCarriker, which was originally described as a distinct genus due to a suite of morphologically unique characters, falls in with a strongly supported clade ofMyrsideaparasitizingRamphastostoucans, and therefore we definitively placeRamphasticolaas a synonym ofMyrsidea. 
    more » « less