Anthropogenic climate change is expected to increase the aridity of many regions of the world. Surface water ecosystems are particularly vulnerable to changes in the water-cycle and may suffer adverse impacts in affected regions. To enhance our understanding of how freshwater communities will respond to predicted shifts in water-cycle dynamics, we employed a space for time approach along a natural precipitation gradient on the Texas Coastal Prairie. In the spring of 2017, we conducted surveys of 10 USGS-gauged, wadeable streams spanning a semi-arid to sub-humid rainfall gradient; we measured nutrients, water chemistry, habitat characteristics, benthic macroinvertebrates, and fish communities. Fish diversity correlated positively with precipitation and was negatively correlated with conductivity. Macroinvertebrate diversity peaked within the middle of the gradient. Semi-arid fish and invertebrate communities were dominated by euryhaline and live-bearing taxa. Sub-humid communities contained environmentally sensitive trichopterans and ephemeropterans as well as a variety of predatory fish which may impose top-down controls on primary consumers. These results warn that aridification coincides with the loss of competitive and environmentally sensitive taxa which could yield less desirable community states.
more »
« less
Birds in arid regions have depauperate louse communities: Climate change implications?
Abstract Environmental factors such as temperature and humidity influence the distribution of free‐living organisms. As climates change, the distributions of these organisms change along with their associated parasites, mutualists and commensals. Less studied, however, is the possibility that environmental conditions may directly influence the distribution of these symbionts even if the hosts are able to persist in altered environments. Here, we investigate the diversity of parasitic lice (Insecta: Phthiraptera) on birds in arid Utah compared to the humid Bahamas. We quantified the parasite loads of 500 birds. We found that the prevalence, abundance and richness of lice was considerably lower among birds in Utah, compared to the Bahamas, despite sampling greater host taxonomic richness in Utah. Our data suggest that as climates change, birds in arid regions will have less diverse louse communities over time, potentially relieving birds of some of the cost of controlling these ectoparasites. Conversely, birds in more humid regions will see an increase in louse diversity, which may require them to invest more time and energy in anti‐parasite defense. Additional research with other ectoparasites of birds and mammals across different environmental conditions is needed to more fully understand how climate change may reshape parasite communities, and how these changes could influence their hosts.
more »
« less
- PAR ID:
- 10571102
- Publisher / Repository:
- Ecology and Evolution
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 14
- Issue:
- 9
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sucking lice are obligate parasites of eutherian mammals and are generally considered to be host-specific parasites. Molecular investigations have found that some current louse taxonomy is incorrect and does not reflect the relationships among families and species. Western chipmunks (23 species of Tamias) and the eastern chipmunk (Tamias striatus) are infested by 2 different species of Hoplopleura sucking lice, Hoplopleura arboricola and Hoplopleura erratica. Hoplopleura arboricola has been found on 19 of 23 western chipmunk species, and H. erratica has only been recorded as a parasite of T. striatus. We investigated the relationships between these chipmunk lice and louse systematic status by supplementing published sequence data with additional sequences and morphological examinations. We estimated phylogenetic relationships using 1,107 coding loci in a maximum-likelihood framework and a species tree approach. In addition to the phylogeny, we calculated raw pairwise distances of the cytochrome oxidase subunit 1 gene (COI) between clades. Both phylogenetic approaches recovered 2 well-supported clades of H. arboricola, 1 of which included H. erratica, suggesting that the 2 louse species are not distinct. Further, examination of louse specimens found no morphological traits that distinguish lice from any of the lineages, including differentiating H. erratica from H. arboricola. The average pairwise distance of COI sequences between the 2 major H. arboricola clades exceeded that of the distances between H. erratica and either of the H. arboricola clades. Based on the genetic similarities and phylogenetic relationships of the lice, it appears that an ancestral louse was associated with western chipmunks and then transferred to the eastern chipmunk. Using the phylogenetic and morphological evidence presented here, Hoplopleura arboricolaKellogg and Ferris, 1915 is relegated to a junior subjective synonym of Hoplopleura erratica (Osborn, 1896). A holotype from the type series is designated for H. erratica. These results suggest a history of chipmunk host species interactions that enabled ectoparasites to disperse between chipmunk species and illustrate the importance of phylogenomic analyses to study species interactions and the history of interspecific associations.more » « less
-
Mammals host a wide diversity of parasites. Lice, comprising more than 5,000 species, are one group of ectoparasites whose major lineages have a somewhat patchwork distribution across the major groups of mammals. Here we explored patterns in the diversification of mammalian lice by reconstructing a higher-level phylogeny of these lice, leveraging whole genome sequence reads to assemble single-copy orthologue genes across the genome. The evolutionary tree of lice indicated that three of the major lineages of placental mammal lice had a single common ancestor. Comparisons of this parasite phylogeny with that for their mammalian hosts indicated that the common ancestor of elephants, elephant shrews and hyraxes (that is, Afrotheria) was the ancestral host of this group of lice. Other groups of placental mammals obtained their lice via host-switching out of these Afrotherian ancestors. In addition, reconstructions of the ancestral host group (bird versus mammal) for all parasitic lice supported an avian ancestral host, indicating that the ancestor of Afrotheria acquired these parasites via host-switching from an ancient avian host. These results shed new light on the long-standing question of why the major groups of parasitic lice are not uniformly distributed across mammals and reveal the origins of mammalian lice.more » « less
-
Phylogenetics and host‐specificity of the mega‐diverse louse genus Myrsidea (Amblycera: Menoponidae)Abstract MyrsideaWaterston is the most diverse genus of chewing lice, primarily parasitizing perching birds (Passeriformes), which is the most speciose avian order.Myrsideaalso parasitize several hosts from non‐passerine groups, including toucans, barbets, woodpeckers (Piciformes) and hummingbirds (Apodiformes). To examine host specificity, host switching and generic limits, we reconstructed a phylogeny of the avian feather louse genusMyrsideausing DNA sequence data from two fragments of the mitochondrial COI gene and a fragment of the nuclear EF‐1α gene for 152Myrsideaspecimens collected from 23 avian host families. Unlike other highly diverse louse genera, only a small proportion ofMyrsideaspecies parasitize more than one host species. We found that host family has significant phylogenetic signal on theMyrsideaphylogeny. These results suggest thatMyrsideais generally highly host‐specific, with some exceptions where host switching is important. We found that there are two separate groups ofMyrsideathat parasitize toucans, and that both are nested withinMyrsideafound on perching birds, suggesting that these toucan ectoparasites may have arisen from two independent host switching events. Lastly, representatives of the genusRamphasticolaCarriker, which was originally described as a distinct genus due to a suite of morphologically unique characters, falls in with a strongly supported clade ofMyrsideaparasitizingRamphastostoucans, and therefore we definitively placeRamphasticolaas a synonym ofMyrsidea.more » « less
-
Community composition is driven by a few key assembly processes: ecological selection, drift and dispersal. Nested parasite communities represent a powerful study system for understanding the relative importance of these processes and their relationship with biological scale. Quantifying β‐diversity across scales and over time additionally offers mechanistic insights into the ecological processes shaping the distributions of parasites and therefore infectious disease. To examine factors driving parasite community composition, we quantified the parasite communities of 959 amphibian hosts representing two species (the Pacific chorus frog, Pseudacris regilla and the California newt, Taricha torosa) sampled over 3 months from 10 ponds in California. Using additive partitioning, we estimated how much of regional parasite richness (γ‐diversity) was composed of within‐host parasite richness (α‐diversity) and turnover (β‐diversity) at three biological scales: across host individuals, across species and across habitat patches (ponds). We also examined how β‐diversity varied across time at each biological scale. Differences among ponds comprised the majority (40%) of regional parasite diversity, followed by differences among host species (23%) and among host individuals (12%). Host species supported parasite communities that were less similar than expected by null models, consistent with ecological selection, although these differences lessened through time, likely due to high dispersal rates of infectious stages. Host individuals within the same population supported more similar parasite communities than expected, suggesting that host heterogeneity did not strongly impact parasite community composition and that dispersal was high at the individual host-level. Despite the small population sizes of within‐host parasite communities, drift appeared to play a minimal role in structuring community composition. Dispersal and ecological selection appear to jointly drive parasite community assembly, particularly at larger biological scales. The dispersal ability of aquatic parasites with complex life cycles differs strongly across scales, meaning that parasite communities may predictably converge at small scales where dispersal is high, but may be more stochastic and unpredictable at larger scales. Insights into assembly mechanisms within multi‐host, multi‐parasite systems provide opportunities for understanding how to mitigate the spread of infectious diseases within human and wildlife hosts.more » « less
An official website of the United States government

