Abstract Pacific‐Panthalassa plate tectonics are the most challenging on Earth to reconstruct during the Mesozoic and Cenozoic eras due to extensive subduction, which has resulted in large (>9,000 km length) unconstrained gaps between the Pacific and Laurasia (now NE Asia) back to the Early Jurassic. We build four contrasted NW Pacific‐Panthalassa global plate reconstructions and assimilate their velocity fields into global geodynamic models. We compare our predicted present mantle structure, synthetic geoid and dynamic topography to Earth observations. P‐wave tomographic filtering of predicted mantle structures allows for more explicit comparisons to global tomography. Plate reconstructions that include intra‐oceanic subduction in NW Pacific‐Panthalassa fit better to the observed geoid and residual topography, challenging popular models of Andean‐style subduction along East Asia. Our geodynamic models predict significant SE‐ward lateral slab advections within the NW Pacific basin lower mantle (∼2,500 km from Mesozoic times to present) that would confound “vertical slab sinking”‐style restorations of imaged slabs and past subduction zone locations.
more »
« less
Linking deep-time subduction history to modern day expressions of dynamic topography
Dynamic topography refers to vertical deflections of Earth’s surface from viscous flow within the mantle. Here we investigate how past subduction history affects present dynamic topography. We assimilate two plate reconstructions into TERRA forward mantle convection models to calculate past mantle states and predict Earth’s present dynamic topography; a comparison is made with a database of observed oceanic residual topography. The two assimilated plate reconstructions ‘Earthbyte’ and ‘Tomopac’ show divergent subduction histories across an extensive deep-time interval within Pacific-Panthalassa. We find that introducing an alternative subduction history perturbs our modelled present-day dynamic topography on the same order as the choice of radial viscosity. Additional circum-Pacific intra-oceanic subduction in Tomopac consistently produces higher correlations to the geoid (more than 20% improvement). At spherical harmonic degrees 1–40, dynamic topography models with intra-oceanic subduction produce universally higher correlations with observations and improve fit by up to 37%. In northeast Asia, Tomopac models show higher correlations (0.46 versus 0.18) to observed residual topography and more accurately predict approximately 1 km of dynamic subsidence within the Philippine Sea plate. We demonstrate that regional deep-time changes in subduction history have widespread impacts on the spatial distribution and magnitude of present-day dynamic topography. Specifically, we find that local changes to plate motion histories can induce dynamic topography changes in faraway regions located thousands of kilometres away. Our results affirm that present-day residual topography observations provide a powerful, additional constraint for reconstructing ancient subduction histories.
more »
« less
- Award ID(s):
- 2422671
- PAR ID:
- 10571141
- Publisher / Repository:
- The Royal Society UK
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 480
- Issue:
- 2301
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plate reconstructions of oceanic domains are generally based on paleo-magnetic and seafloor spreading records. However, uncertainties associated with such reconstructions grow rapidly with increasing geological age because the original oceanic plates have been subducted. Here we synthesize advances in seismic tomographic mapping of subducted plates now lying within the mantle that assist plate reconstructions. Our proposed Japan–NW Pacific subduction histories incorporate tomography results and show three distinct stages comparable to those revealed by geochronology, petrology, and geochemistry. We propose major revisions to previously accepted ideas about the age, kinematics, and identity of the plates outboard of Japan during the Cretaceous–Paleogene Sanbagawa-Ryoke paired metamorphism. These revisions require updates to relevant plate convergence boundary conditions and thermo-dynamic models.more » « less
-
Abstract The plate tectonic history of the hypothesized “proto‐South China Sea” (PSCS) ocean basin and surrounding SE Asia since Cenozoic times is controversial. We implement four diverse proto‐South China Sea plate reconstructions into global geodynamic models to constrain PSCS plate tectonics and possible slab locations. Our plate reconstructions consider the following: southward versus double‐sided PSCS subduction models; earlier (Eocene) or later (late Oligocene) initiation of Borneo counterclockwise rotations; and larger or smaller reconstructed Philippine Sea plate sizes. We compare our modeling results against tomographic images by accounting for mineralogical effects and the finite resolution of seismic tomography. All geodynamic models reproduce the tomographically imaged Sunda slabs beneath Peninsular Malaysia, Sumatra, and Java. Southward PSCS subduction produces slabs beneath present Palawan, northern Borneo, and offshore Palawan. Double‐sided PSCS subduction combined with earlier Borneo rotations uniquely reproduces subhorizontal slabs under the southern South China Sea (SCS) at ~400 to 700 km depths; these models best fit seismic tomography. A smaller Philippine Sea (PS) plate with a ~1,000‐km‐long restored Ryukyu slab was superior to a very large PS plate. Considered together, our four end‐member plate reconstructions predict that the PSCS slabs are now at <900 km depths under present‐day Borneo, the SCS, the Sulu and Celebes seas, and the southern Philippines. Regardless of plate reconstruction, we predict (1) mid‐Cenozoic passive return‐flow upwellings under Indochina; and (2) late Cenozoic downwellings under the SCS that do not support a deep‐origin “Hainan plume.” Modeled Sundaland dynamic topography strongly depends on the imposed plate reconstructions, varying by almost 1 km.more » « less
-
Abstract Plate reconstruction models are constructed to fit constraints such as magnetic anomalies, fracture zones, paleomagnetic poles, geological observations and seismic tomography. However, these models do not consider the physical equations of plate driving forces when reconstructing plate motion. This can potentially result in geodynamically-implausible plate motions, which has implications for a range of work based on plate reconstruction models. We present a new algorithm that calculates time-dependent slab pull, ridge push (GPE force) and mantle drag resistance for any topologically closed reconstruction, and evaluates the residuals—or missing components—required for torques to balance given our assumed plate driving force relationships. In all analyzed models, residual torques for the present-day are three orders of magnitude smaller than the typical driving torques for oceanic plates, but can be of the same order of magnitude back in time—particularly from 90 to 50 Ma. Using the Pacific plate as an example, we show how our algorithm can be used to identify areas and times with high residual torques, where either plate reconstructions have a high degree of geodynamic implausibility or our understanding of the underlying geodynamic forces is incomplete. We suggest strategies for plate model improvements and also identify times when other forces such as active mantle flow were likely important contributors. Our algorithm is intended as a tool to help assess and improve plate reconstruction models based on a transparent and expandable set of a priori dynamic constraints.more » « less
-
SUMMARY Tectonic plate motions predominantly result from a balance between the potential energy change of the subducting slab and viscous dissipation in the mantle, bending lithosphere and slab–upper plate interface. A wide range of observations from active subduction zones and exhumed rocks suggest that subduction interface shear zone rheology is sensitive to the composition of subducting crustal material—for example, sediments versus mafic igneous oceanic crust. Here we use 2-D numerical models of dynamically consistent subduction to systematically investigate how subduction interface viscosity influences large-scale subduction kinematics and dynamics. Our model consists of an oceanic slab subducting beneath an overriding continental plate. The slab includes an oceanic crustal/weak layer that controls the rheology of the interface. We implement a range of slab and interface strengths and explore how the kinematics respond for an initial upper mantle slab stage, and subsequent quasi-steady-state ponding near a viscosity jump at the 660-km-discontinuity. If material properties are suitably averaged, our results confirm the effect of interface strength on plate motions as based on simplified viscous dissipation analysis: a ∼2 order of magnitude increase in interface viscosity can decrease convergence speeds by ∼1 order of magnitude. However, the full dynamic solutions show a range of interesting behaviour including an interplay between interface strength and overriding plate topography and an end-member weak interface-weak slab case that results in slab break-off/tearing. Additionally, for models with a spatially limited, weak sediment strip embedded in regular interface material, as might be expected for the subduction of different types of oceanic materials through Earth’s history, the transient response of enhanced rollback and subduction velocity is different for strong and weak slabs. Our work substantiates earlier suggestions as to the importance of the plate interface, and expands the range of quantifiable links between plate reorganizations, the nature of the incoming and overriding plate and the potential geological record.more » « less
An official website of the United States government

