skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 3, 2025

Title: Two ways to learn in visuomotor adaptation
Abstract Previous research has demonstrated significant inter-individual variability in the recruitment of the fast-explicit and slow-implicit processes during motor adaptation. In addition, we previously identified qualitative individual differences in adaptation linked to the formation and updating of new memory processes. Here, we investigated quantitative and qualitative differences in visuomotor adaptation with a design incorporating repeated learning and forgetting blocks, allowing for precise estimation of individual learning and forgetting rates in fast-slow adaptation models. Participants engaged in a two-day online visuomotor adaptation task. They first adapted to a 30-degree perturbation to eight targets in three blocks separated by short blocks of no feedback trials. Approximately 24 hours later, they performed a no-feedback retention block and a relearning block. We clustered the participants into strong and weak learners based on adaptation levels at the end of day one and fitted a fast-slow system to the adaptation data. Strong learners exhibited a strong negative correlation between the estimated slow and fast processes, which predicted 24-hour retention and savings, respectively, supporting the engagement of a fast-slow system. The pronounced individual differences in the recruitment of the two processes were attributed to wide ranges of estimated learning rates. Conversely, weak learners exhibited a positive correlation between the two estimated processes, as well as retention but no savings, supporting the engagement of a single slow system. Finally, both during baseline and adaptation, reaction times were shorter for weak learners. Our findings thus revealed two distinct ways to learn in visuomotor adaptation and highlight the necessity of considering both quantitative and qualitative individual differences in studies of motor learning.  more » « less
Award ID(s):
2216344
PAR ID:
10571146
Author(s) / Creator(s):
; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Short-term motor adaptation to novel movement dynamics has been shown to involve at least two concurrent learning processes: a slow process that responds weakly to error but retains information well and a fast process that responds strongly to error but has poor retention. This modeling framework can explain several properties of motion-dependent motor adaptation (e.g., 24 h retention). An important assumption of this computational framework is that learning is only based on the experienced movement error, and the effect of noise (either internally generated or externally applied) is not considered. We examined the respective error sensitivity by quantifying adaptation in three subject groups distinguished by the noise added to the motion-dependent perturbation. We assessed the feedforward adaptive changes in motor output and examined the adaptation rate, retention, and decay of learning. Applying a two-state modeling framework showed that the applied noise during training mainly affected the fast learning process, with the slow process largely unaffected; participants in the higher noise groups demonstrated a reduced force profile following training, but the decay rate across groups was similar, suggesting that the slow process was unimpaired across conditions. Collectively, our results provide evidence that noise significantly decreases motor adaptation, but this reduction may be due to its influence over specific learning mechanisms. Importantly, this may have implications for how the motor system compensates for random fluctuations, especially when affected by brain disorders that result in movement tremor (e.g., essential tremor). 
    more » « less
  2. null (Ed.)
    The human ability to use different tools demonstrates our capability of forming and maintaining multiple, context-specific motor memories. Experimentally, this has been investigated in dual adaptation, where participants adjust their reaching movements to opposing visuomotor transformations. Adaptation in these paradigms occurs by distinct processes, such as strategies for each transformation or the implicit acquisition of distinct visuomotor mappings. Although distinct, transformation-dependent aftereffects have been interpreted as support for the latter, they could reflect adaptation of a single visuomotor map, which is locally adjusted in different regions of the workspace. Indeed, recent studies suggest that explicit aiming strategies direct where in the workspace implicit adaptation occurs, thus potentially serving as a cue to enable dual adaptation. Disentangling these possibilities is critical to understanding how humans acquire and maintain motor memories for different skills and tools. We therefore investigated generalization of explicit and implicit adaptation to untrained movement directions after participants practiced two opposing cursor rotations, which were associated with the visual display being presented in the left or right half of the screen. Whereas participants learned to compensate for opposing rotations by explicit strategies specific to this visual workspace cue, aftereffects were not cue sensitive. Instead, aftereffects displayed bimodal generalization patterns that appeared to reflect locally limited learning of both transformations. By varying target arrangements and instructions, we show that these patterns are consistent with implicit adaptation that generalizes locally around movement plans associated with opposing visuomotor transformations. Our findings show that strategies can shape implicit adaptation in a complex manner. NEW & NOTEWORTHY Visuomotor dual adaptation experiments have identified contextual cues that enable learning of separate visuomotor mappings, but the underlying representations of learning are unclear. We report that visual workspace separation as a contextual cue enables the compensation of opposing cursor rotations by a combination of explicit and implicit processes: Learners developed context-dependent explicit aiming strategies, whereas an implicit visuomotor map represented dual adaptation independent from arbitrary context cues by local adaptation around the explicit movement plan. 
    more » « less
  3. Abstract Many daily activities require performance of multiple tasks integrating cognitive and motor processes. While the fact that both processes go through deterioration and changes with aging has been generally accepted, not much is known about how aging interacts with stages of motor skill acquisition under a cognitively demanding situation. To address this question, we combined a visuomotor adaptation task with a secondary cognitive task. We made two primary findings beyond the expected age-related performance deterioration. First, while young adults showed classical dual-task cost in the early motor learning phase dominated by explicit processes, older adults instead strikingly displayed enhanced performance in the later stage, dominated by implicit processes. For older adults, the secondary task may have facilitated a shift to their relatively intact implicit learning processes that reduced reliance on their already-deficient explicit processes during visuomotor adaptation. Second, we demonstrated that consistently performing the secondary task in learning and re-learning phases can operate as an internal task-context and facilitate visuomotor memory retrieval later regardless of age groups. Therefore, our study demonstrated age-related similarities and differences in integrating concurrent cognitive load with motor skill acquisition which, may in turn, contributes to the understanding of a shift in balance across multiple systems. 
    more » « less
  4. Gail, Alexander (Ed.)
    The motor system demonstrates an exquisite ability to adapt to changes in the environment and to quickly reset when these changes prove transient. If similar environmental changes are encountered in the future, learning may be faster, a phenomenon known as savings. In studies of sensorimotor learning, a central component of savings is attributed to the explicit recall of the task structure and appropriate compensatory strategies. Whether implicit adaptation also contributes to savings remains subject to debate. We tackled this question by measuring, in parallel, explicit and implicit adaptive responses in a visuomotor rotation task, employing a protocol that typically elicits savings. While the initial rate of learning was faster in the second exposure to the perturbation, an analysis decomposing the 2 processes showed the benefit to be solely associated with explicit re-aiming. Surprisingly, we found a significant decrease after relearning in aftereffect magnitudes during no-feedback trials, a direct measure of implicit adaptation. In a second experiment, we isolated implicit adaptation using clamped visual feedback, a method known to eliminate the contribution of explicit learning processes. Consistent with the results of the first experiment, participants exhibited a marked reduction in the adaptation function, as well as an attenuated aftereffect when relearning from the clamped feedback. Motivated by these results, we reanalyzed data from prior studies and observed a consistent, yet unappreciated pattern of attenuation of implicit adaptation during relearning. These results indicate that explicit and implicit sensorimotor processes exhibit opposite effects upon relearning: Explicit learning shows savings, while implicit adaptation becomes attenuated 
    more » « less
  5. Abstract Humans exhibit large interindividual differences in motor learning ability. However, most previous studies have examined properties common across populations, with less emphasis on interindividual differences. We hypothesized here, based on our previous experimental and computational motor adaptation studies, that individual differences in effective learning rates between a generalist memory module that assumes environmental continuity and specialist modules that are responsive to trial-by-trial environmental changes could explain both large population-wise and individual-wise differences in dual tasks adaptation under block and random schedules. Participants adapted to two opposing force fields, either sequentially with alternating training blocks or simultaneously with random sequences. As previously reported, in the block training schedule, all participants adapted to the force field presented in a block but showed large interference in the subsequent opposing force field blocks, such that adapting to the two force fields was impossible. In contrast, in the random training schedule, participants could adapt to the two conflicting tasks simultaneously as a group; however, large interindividual variability was observed. A modified MOSAIC computational model of motor learning equipped with one generalist module and two specialist modules explained the observed behavior and variability for wide parameter ranges: when the predictions errors were large and consistent as in block schedules, the generalist module was selected to adapt quickly. In contrast, the specialist modules were selected when they more accurately predicted the changing environment than the generalist, as during random schedules; this resulted in consolidated memory specialized to each environment, but only when the ratio of learning rates of the generalist to specialists was relatively small. This dynamic selection process plays a crucial role in explaining the individual differences observed in motor learning abilities. 
    more » « less