skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils
ABSTRACT The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0–30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0‐30 cm and 0–100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0–30 cm and 222.75 Pg C for 0–100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome‐level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.  more » « less
Award ID(s):
2145130
PAR ID:
10571187
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
12
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Soil represents the largest phosphorus (P) stock in terrestrialecosystems. Determining the amount of soil P is a critical first step inidentifying sites where ecosystem functioning is potentially limited by soilP availability. However, global patterns and predictors of soil total Pconcentration remain poorly understood. To address this knowledge gap, weconstructed a database of total P concentration of 5275 globallydistributed (semi-)natural soils from 761 published studies. We quantifiedthe relative importance of 13 soil-forming variables in predicting soiltotal P concentration and then made further predictions at the global scaleusing a random forest approach. Soil total P concentration variedsignificantly among parent material types, soil orders, biomes, andcontinents and ranged widely from 1.4 to 9630.0 (median 430.0 and mean570.0) mg kg−1 across the globe. About two-thirds (65 %) of theglobal variation was accounted for by the 13 variables that we selected,among which soil organic carbon concentration, parent material, mean annualtemperature, and soil sand content were the most important ones. Whilepredicted soil total P concentrations increased significantly with latitude,they varied largely among regions with similar latitudes due to regionaldifferences in parent material, topography, and/or climate conditions. SoilP stocks (excluding Antarctica) were estimated to be 26.8 ± 3.1 (mean ± standard deviation) Pg and 62.2 ± 8.9 Pg (1 Pg = 1 × 1015 g) in the topsoil (0–30 cm) and subsoil (30–100 cm), respectively.Our global map of soil total P concentration as well as the underlyingdrivers of soil total P concentration can be used to constraint Earth systemmodels that represent the P cycle and to inform quantification of globalsoil P availability. Raw datasets and global maps generated in this studyare available at https://doi.org/10.6084/m9.figshare.14583375(He et al., 2021). 
    more » « less
  2. Abstract As Arctic regions warm rapidly, it is unclear whether high‐latitude soil carbon (C) will decrease or increase. Predicting future dynamics of Arctic soil C stocks requires a better understanding of the quantities and controls of soil C. We explore the relationship between vegetation and surface soil C in an understudied region of the Arctic: Baffin Island, Nunavut, Canada. We combined soil C data for three vegetation types—polar desert, mesic tundra, and wet meadow—with a vegetation classification to upscale soil C stocks. Surface soil C differed significantly across vegetation types, and interactions existed between vegetation type and soil depth. Polar desert soils were consistently mineral, with relatively thin organic layers, low percent C, and high bulk density. Mesic soils exhibited an organic‐rich epipedon overlying mineral soil. Wet meadows were consistently organic soil with low bulk density and high percent C. For the top 20 cm, polar desert contained the least soil C (2.17 ± 0.48 kg m−2); mesic tundra had intermediate C (8.92 ± 0.74 kg m−2); wet meadow stored the most C (13.07 ± 0.69 kg m−2). Extrapolating to the top 30 cm, our results suggest that approximately 44 Tg C is stored in the study region with a mean landscape soil C stock of 2.75 kg m−2for non‐water areas. Combining vegetation mapping with local soil C stocks considerably narrows the range of estimates from other upscaling approaches (27–189 Tg) for soil C on South Baffin Island. 
    more » « less
  3. Abstract Estimates of soil organic carbon (SOC) stocks are essential for many environmental applications. However, significant inconsistencies exist in SOC stock estimates for the U.S. across current SOC maps. We propose a framework that combines unsupervised multivariate geographic clustering (MGC) and supervised Random Forests regression, improving SOC maps by capturing heterogeneous relationships with SOC drivers. We first used MGC to divide the U.S. into 20 SOC regions based on the similarity of covariates (soil biogeochemical, bioclimatic, biological, and physiographic variables). Subsequently, separate Random Forests models were trained for each SOC region, utilizing environmental covariates and SOC observations. Our estimated SOC stocks for the U.S. (52.6 ± 3.2 Pg for 0–30 cm and 108.3 ± 8.2 Pg for 0–100 cm depth) were within the range estimated by existing products like Harmonized World Soil Database, HWSD (46.7 Pg for 0–30 cm and 90.7 Pg for 0–100 cm depth) and SoilGrids 2.0 (45.7 Pg for 0–30 cm and 133.0 Pg for 0–100 cm depth). However, independent validation with soil profile data from the National Ecological Observatory Network showed that our approach (R2 = 0.51) outperformed the estimates obtained from Harmonized World Soil Database (R2 = 0.23) and SoilGrids 2.0 (R2 = 0.39) for the topsoil (0–30 cm). Uncertainty analysis (e.g., low representativeness and high coefficients of variation) identified regions requiring more measurements, such as Alaska and the deserts of the U.S. Southwest. Our approach effectively captures the heterogeneous relationships between widely available predictors and the current SOC baseline across regions, offering reliable SOC estimates at 1 km resolution for benchmarking Earth system models. 
    more » « less
  4. Abstract Identifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral‐associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.e., mean annual temperature [MAT] and mean annual precipitation minus potential evapotranspiration [MAP‐PET]), carbon (C) input (i.e., net primary production [NPP]), and soil property data synthesized from 72 published studies, along with data we generated from the National Ecological Observatory Network soil pits (n = 901 total observations). To assess the utility of investigating POC and MAOC separately in understanding SOC storage controls, we then compared these results with another path analysis predicting bulk SOC storage. We found that POC storage is negatively related to MAT and soil pH, while MAOC storage is positively related to NPP and MAP‐PET, but negatively related to soil % sand. Our path analysis predicting bulk SOC revealed similar trends but explained less variation in C storage than our POC and MAOC analyses. Given that temperature and pH impose constraints on microbial decomposition, this indicates that POC is primarily controlled by SOC loss processes. In contrast, strong relationships with variables related to plant productivity constraints, moisture, and mineral surface availability for sorption indicate that MAOC is primarily controlled by climate‐driven variations in C inputs to the soil, as well as C stabilization mechanisms. Altogether, these results demonstrate that global POC and MAOC storage are controlled by separate environmental variables, further justifying the need to quantify and model these C fractions separately to assess and forecast the responses of SOC storage to global change. 
    more » « less
  5. Abstract Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions. 
    more » « less