Abstract Though herbivore grass dependence has been shown to increase with body size across herbivore species, it is unclear whether this relationship holds at the community level. Here we evaluate whether grass consumption scales positively with body size within African large mammalian herbivore communities and how this relationship varies with environmental context. We used stable carbon isotope and community occurrence data to investigate how grass dependence scales with body size within 23 savanna herbivore communities throughout eastern and central Africa. We found that dietary grass fraction increased with body size for the majority of herbivore communities considered, especially when complete community data were available. However, the slope of this relationship varied, and rainfall seasonality and elephant presence were key drivers of the variation—grass dependence increased less strongly with body size where rainfall was more seasonal and where elephants were present. We found also that the dependence of the herbivore community as a whole on grass peaked at intermediate woody cover. Intraspecific diet variation contributed to these community‐level patterns: common hippopotamus (Hippopotamus amphibius) and giraffe (Giraffa camelopardalis) ate less grass where rainfall was more seasonal, whereas Cape buffalo (Syncerus caffer) and savanna elephant (Loxodonta africana) grass consumption were parabolically related to woody cover. Our results indicate that general rules appear to govern herbivore community assembly, though some aspects of herbivore foraging behavior depend upon local environmental context.
more »
« less
This content will become publicly available on December 31, 2025
Non‐Analog Behaviour of Eastern African Herbivore Communities During the Last Glacial Period
ABSTRACT Modern African ungulates navigate seasonal variation in resource availability through diet‐switching (primarily mixed‐feeders) and/or migrating (primarily grass grazers). These ecological generalisations are well‐documented today, but the extent to which they apply to the non‐analog ecosystems of the Pleistocene are unclear. Drawing from serially‐sampled stable isotope measurements from 18 Kenyan large herbivore species from the Last Glacial Period (LGP), we evaluate how diet, diet‐switching, and migration compare to observations from present‐day settings. We find a higher grazing signal in most LGP species and a greater magnitude of diet‐switching than in the present. Additionally, we find that the relationships between grass intake, migration, diet‐switching, and body size during the LGP were unlike those observed today. This establishes a revised paleoecology of LGP herbivore communities and highlights that LGP herbivores were behaviourally non‐analog. Our results imply that ecological observations from present‐day settings offer an incomplete perspective of herbivore‐environment interactions.
more »
« less
- Award ID(s):
- 2224318
- PAR ID:
- 10571197
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 28
- Issue:
- 1
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Host phylogeny and host ecology structure the mammalian gut microbiota at different taxonomic scalesAbstract The gut microbiota is critical for host function. Among mammals, host phylogenetic relatedness and diet are strong drivers of gut microbiota structure, but one factor may be more influential than the other. Here, we used 16S rRNA gene sequencing to determine the relative contributions of host phylogeny and host diet in structuring the gut microbiotas of 11 herbivore species from 5 families living sympatrically in southwest Kenya. Herbivore species were classified as grazers, browsers, or mixed-feeders and dietary data (% C4 grasses in diet) were compiled from previously published sources. We found that herbivore gut microbiotas were highly species-specific, and that host taxonomy accounted for more variation in the gut microbiota (30%) than did host dietary guild (10%) or sample month (8%). Overall, similarity in the gut microbiota increased with host phylogenetic relatedness (r = 0.74) across the 11 species of herbivores, but among 7 closely related Bovid species, dietary %C4 grass values more strongly predicted gut microbiota structure (r = 0.64). Additionally, within bovids, host dietary guild explained more of the variation in the gut microbiota (17%) than did host species (12%). Lastly, while we found that the gut microbiotas of herbivores residing in southwest Kenya converge with those of distinct populations of conspecifics from central Kenya, fine-scale differences in the abundances of bacterial amplicon sequence variants (ASVs) between individuals from the two regions were also observed. Overall, our findings suggest that host phylogeny and taxonomy strongly structure the gut microbiota across broad host taxonomic scales, but these gut microbiotas can be further modified by host ecology (i.e., diet, geography), especially among closely related host species.more » « less
-
Abstract Seasonal diet shifts and migration are key components of large herbivore population dynamics, but we lack a systematic understanding of how these behaviours are distributed on a macroecological scale.The prevalence of seasonal strategies is likely related to herbivore body size and feeding guild, and may also be influenced by properties of the environment, such as soil nutrient availability and climate seasonality.We evaluated the distribution of seasonal dietary shifts and migration across large‐bodied mammalian herbivores and determined how these behaviours related to diet, body size and environment.We found that herbivore strategies were consistently correlated with their traits: seasonal diet shifts were most prevalent among mixed feeding herbivores and migration among grazers and larger herbivores. Seasonality also played a role, particularly for migration, which was more common at higher latitudes. Both dietary shifts and migration were more widespread among extratropical herbivores, which also exhibited more intermediate diets and body sizes.Our findings suggest that strong seasonality in extratropical systems imposes pressure on herbivores, necessitating widespread behavioural responses to navigate seasonal resource bottlenecks. It follows that tropical and extratropical herbivores may have divergent responses to global change, with intensifying herbivore pressure in extratropical systems contrasting with diminishing herbivore pressure in tropical systems.more » « less
-
Paleoenvironmental reconstructions of the Last Glacial Period of eastern Africa paint a picture of a landscape dominated by grasslands and herds of diverse grazing herbivores unlike anywhere in modern Africa. However, the scale of such reconstructions is often at the site level and greatly time-averaged. To elucidate the impact of glacial conditions on tropical grassland animal behavior, a more direct proxy is needed. Using stable strontium, carbon, and oxygen isotopes, we reconstruct paleoenvironmental conditions and behavior of 18 bovid and equid species from four sites dating to the Last Glacial Period in Kenya (Karungu, Rusinga, Kibogo, and Lukenya Hill). In doing so, we address i) migration patterns, ii) seasonality of precipitation and diet, and iii) the role that seasonal responses played in niche separation of closely related species. We find that migration played a similar role in Last Glacial Period grasslands to what it does today but with a notably different set of species; that animals had relatively stable, grass-dominated diets year-round, peaking in C4 grass abundance during the Last Glacial Maximum; that precipitation and seasonality fell within the range of modern eastern African ecosystems; and that a diverse guild of ungulate grazers was able to coexist due to niche separation detectable as isotopic differences. These results combine to extend the theory that eastern African grasslands were greatly expanded and resource-rich year-round during the Last Glacial Period, creating highly favorable conditions for grazing ungulates. Additionally, they demonstrate the geologic recency of the modern guild of migratory species in eastern Africa, which replaced a set of now-extinct migratory species once common in grasslands during the Last Glacial Period, most notably the enigmatic bovid Rusingoryx. Our results illustrate the ecosystem dynamics of Late Pleistocene Kenya on a scale not attainable with most other paleoenvironmental proxies: the scale of individual animals’ lifetimes. This is nearly as close as possible to an actualistic ecological survey of ungulate behavior during the Last Glacial Period in a setting not analogous to any ecosystem on Earth today.more » « less
-
Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families—grasses and legumes—accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.more » « less
An official website of the United States government
