抄録 It is important to understand the long-term migration of radionuclides when considering long-lasting rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides pathways for fluid flow. The geometry of such a network can change due to fracture sealing by fine-grained material over extended periods of time. Groundwater commonly contains fine-grained material such as clay minerals, and it is probable that such minerals accumulate within rock fractures during groundwater flow, thereby decreasing fracture apertures and bulk permeability. It is therefore essential to conduct permeability measurements using water that includes fine-grained minerals in order to understand the evolving permeability characteristics of rock. However, this has not been studied to date in in-situ rock mass. Therefore, in the present study, we perform permeability measurements in a granite rock mass to investigate the change of permeability that occurs under the flow of water that includes clays. Our findings show that clay particles accumulate in fractures and that the permeability (hydraulic conductivity) of the granite rock mass decreases over time. The decrease was more significant in the earlier time. We conclude that the accumulation of clay minerals in the fracture decreases the permeability of a rock mass. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that contains clay minerals.
more »
« less
Radar imaging of fractures and voids behind the walls of an underground mine
Two- and three-dimensional rock-penetrating-radar data were acquired on the wall of a pillar in an underground limestone mine. The objective was to test the ability of radar to image fractures and karst voids and to characterize their geometry, aperture, and fluid content, with the goal of mitigating mining hazards. Strong radar reflections in the field data correlate with fractures and a cave exposed on the pillar walls. Large pillar wall topography was included in the steep-dip Kirchhoff migration algorithm because standard elevation corrections are inaccurate. The depth-migrated 250 MHz radar images illuminate fractures, karst voids, and the far wall of the pillar up to approximately 25 m depth into the rock, with a spatial resolution of <0.5 m. Higher frequency radar improved the image resolution and aided in the interpretation, but at the cost of shallower depth of penetration and extra acquisition effort. Due to the strong contrast in physical properties between the rock and the fracture fluid, fractures with apertures as thin as a 50th of a radar wavelength were imaged. Water-filled fractures with mm-scale aperture and air-filled fractures with cm-scale apertures produce strong reflections at 250 MHz. A strong variation in the reflection amplitude along each fracture is interpreted to represent the variable fracture aperture and the nonplanar fracture structure. Fracture apertures were quantitatively measured, but distinguishing water from air-filled fractures was not possible due to the complex radar wavelet and fracture geometry. Two conjugate fracture sets were imaged. One of these fracture sets dominates the rock mass stability and water inrush challenges throughout the mine. All of the detected voids and a large cave are at the intersection of two fractures, indicating preferential water flow and dissolution along conjugate fracture intersections. Detecting, locating, and characterizing fractures and voids prior to excavation can enable miners to mitigate potential collapse and flood hazards before they occur.
more »
« less
- Award ID(s):
- 1822108
- PAR ID:
- 10325910
- Date Published:
- Journal Name:
- GEOPHYSICS
- Volume:
- 86
- Issue:
- 4
- ISSN:
- 0016-8033
- Page Range / eLocation ID:
- H27 to H41
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. The continuum of behavior that emerges during fracturenetwork development in crystalline rock may be categorized into threeend-member modes: fracture nucleation, isolated fracture propagation, andfracture coalescence. These different modes of fracture growth producefracture networks with distinctive geometric attributes, such as clusteringand connectivity, that exert important controls on permeability and theextent of fluid–rock interactions. To track how these modes of fracturedevelopment vary in dominance throughout loading toward failure and thushow the geometric attributes of fracture networks may vary under theseconditions, we perform in situ X-ray tomography triaxial compressionexperiments on low-porosity crystalline rock (monzonite) under upper-crustalstress conditions. To examine the influence of pore fluid on the varyingdominance of the three modes of growth, we perform two experiments undernominally dry conditions and one under water-saturated conditions with 5 MPa ofpore fluid pressure. We impose a confining pressure of 20–35 MPa and thenincrease the differential stress in steps until the rock failsmacroscopically. After each stress step of 1–5 MPa we acquire athree-dimensional (3D) X-ray adsorption coefficient field from which weextract the 3D fracture network. We develop a novel method of trackingindividual fractures between subsequent tomographic scans that identifieswhether fractures grow from the coalescence and linkage of several fracturesor from the propagation of a single fracture. Throughout loading in all ofthe experiments, the volume of preexisting fractures is larger than that ofnucleating fractures, indicating that the growth of preexisting fracturesdominates the nucleation of new fractures. Throughout loading until close tomacroscopic failure in all of the experiments, the volume of coalescingfractures is smaller than the volume of propagating fractures, indicatingthat fracture propagation dominates coalescence. Immediately precedingfailure, however, the volume of coalescing fractures is at least double thevolume of propagating fractures in the experiments performed at nominallydry conditions. In the water-saturated sample, in contrast, although thevolume of coalescing fractures increases during the stage preceding failure,the volume of propagating fractures remains dominant. The influence ofstress corrosion cracking associated with hydration reactions at fracturetips and/or dilatant hardening may explain the observed difference infracture development under dry and water-saturated conditions.more » « less
-
Davidson, Cam; Wirth, Karl (Ed.)Fault-tip damage zones develop in response to fault propagation and displacement and are caused by the local amplification of stresses at the fault tip. Understanding the geometry and intensity of damage zones is crucial for evaluating earthquake hazards and assessing the potentials of oil and gas production, geothermal energy, and groundwater resources. Fractures initiate as a result of stresses exceeding rock strength and propagate based on the stress field at the fault tip. We investigate the damage zone of a fault segment within the Sevier normal fault zone near Orderville, Utah, focusing on fractures that developed within the Jurassic Navajo Sandstone, the Temple Cap Formation, and the oldest beds of the Carmel Formation. Because normal faults grow laterally as slip and displacement increase, we focus on the tip zone of a fault segment where fracturing is well-exposed. We executed a series of unmanned aerial vehicle (UAV) flights to capture high-resolution imagery of inaccessible rock exposures. We use these images to construct structure-from-motion (SfM) virtual outcrop models (VOMs) that we georeference and analyze using Agisoft Metashape. We collected and analyzed fracture orientation and intensity data in the field and with VOMs. Both types of data reveal a distribution of fracture intensity that is consistent with inner and outer damage zones similar to previous studies of other fault systems. Adjacent to the tip, the inner damage zone has a higher fracture intensity on the hanging wall compared to the footwall. This high fracture intensity on the hanging wall ends 30 meters over from the fault core where the intensity of the outer damage zone of the hanging wall becomes similar to that within the inner damage zone of the footwall. Laterally, along strike of the fault tip, intense fracturing ends 60 meters to the south and all fracturing ends 350 meters from the fault tip. Our results have implications for the spatial distribution of fracturing and related permeability in similar normal fault systems.more » « less
-
Abstract Rock fracture surfaces in the crust are essential habitat for microorganisms. Fracture‐groundwater interfaces provide physical substrates for biofilm growth and are sources of carbon, nutrients, and electron donors and acceptors. To better understand geochemical processes impacting fracture surfaces and the subsurface microbiome, we identified fractures in archived rock cores from the Soudan formation, which is known to host saline groundwaters and isolated microbial communities dependent on rock‐water interactions. Cores with open fractures were thin sectioned and studied via electron microprobe and synchrotron X‐ray fluorescence microprobe. Most fracture surfaces had mineralogy distinct from that of the bulk rock. Chlorite minerals were abundant on fracture surfaces and had elemental compositions suggesting deposition during late‐stage hydrothermal alteration. Fracture‐lining chlorites likely limit access to iron oxide and sulfide minerals that are active in subsurface biogeochemical cycles. Calcium‐rich rinds were also observed along fracture edges. These rinds were too thin and poorly ordered to be identified via light microscopy or X‐ray diffraction; however, Ca K‐edge micro‐X‐ray absorption near‐edge structure spectroscopy identified them as carbonates, minerals not observed in the bulk rock. Thermodynamic modeling shows that carbonate precipitation is largely unfavorable in Soudan groundwaters, indicating that fracture edge conditions differed from those in modern water samples. Because of the low carbon concentrations in Soudan groundwaters, carbonate rinds likely play an important role in subsurface carbon cycling and may mark fracture surfaces that once hosted biofilms. Overall, this study suggests that fracture alteration can both play an active role in and suppress rock‐water interactions essential to subsurface life.more » « less
-
An emerging application of wireless sensing is locating and tracking humans in their living environments, a primitive that can be leveraged in both daily life applications and emergency situations. However, most proposed methods have limited spatial resolution when multiple humans are in close vicinity. The problem becomes exacerbated when there is no line-of-sight path to the humans. In this paper, we consider multi-person localization of humans in close vicinity of each other. We propose the use of synthetic aperture radar that combines both translation and rotation to increase effective aperture size, leveraging small rhythmic changes in the radar range due to human breathing. We experimentally evaluate the proposed algorithm in both line-of-sight and through-wall cases with three to five humans in the scene. Our experimental results show that: (i) larger synthetic apertures due to radar translation improve multi-person localization, e.g., by 1.42× when the aperture size is increased by a factor of 2×, and (ii) rotation can largely compensate for gains provided by translation, e.g., rotating the radar over 360° without changing the aperture size results in 1.22× gains over no rotation. Overall, maximal gains of 2.19× are achieved by rotating and translating over a 2× larger aperture.more » « less
An official website of the United States government

