skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: Disinformation Spillover: Uncovering the Ripple Effect of Bot-Assisted Fake Social Engagement on Public Attention
Disinformation activities that aim to manipulate public opinion pose serious challenges to managing online platforms. One of the most widely used disinformation techniques is bot-assisted fake social engagement, which is used to falsely and quickly amplify the salience of information at scale. Based on agenda-setting theory, we hypothesize that bot-assisted fake social engagement boosts public attention in the manner intended by the manipulator. Leveraging a proven case of bot-assisted fake social engagement operation in a highly trafficked news portal, this study examines the impact of fake social engagement on the digital public’s news consumption, search activities, and political sentiment. For that purpose, we used ground-truth labels of the manipulator’s bot accounts, as well as real-time clickstream logs generated by ordinary public users. Results show that bot-assisted fake social engagement operations disproportionately increase the digital public’s attention to not only the topical domain of the manipulator’s interest (i.e., political news) but also to specific attributes of the topic (i.e., political keywords and sentiment) that align with the manipulator’s intention. We discuss managerial and policy implications for increasingly cluttered online platforms.  more » « less
Award ID(s):
2210137
PAR ID:
10571276
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Management Information Systems Research Center
Date Published:
Journal Name:
MIS Quarterly
Volume:
48
Issue:
3
ISSN:
0276-7783
Page Range / eLocation ID:
847 to 872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, deepfake techniques have been adopted by real-world adversaries to fabricate believable personas (posing as experts or insiders) in disinformation campaigns to promote false narratives and deceive the public. In this paper, we investigate how fake personas influence the user perception of the disinformation shared by such accounts. Using Twitter as an exemplary platform, we conduct a user study (N=417) where participants read tweets of fake news with (and without) the presence of the tweet authors' profiles. Our study examines and compares three types of fake profiles: deepfake profiles, profiles of relevant organizations, and simple bot profiles. Our results highlight the significant impact of deepfake and organization profiles on increasing the perceived information accuracy of and engagement with fake news. Moreover, deepfake profiles are rated as significantly more real than other profile types. Finally, we observe that users may like/reply/share a tweet even though they believe it was inaccurate (e.g., for fun or truth-seeking), which could further disseminate false information. We then discuss the implications of our findings and directions for future research. 
    more » « less
  2. null (Ed.)
    With more than 3 billion users, online social networks represent an important venue for moral and political discourse and have been used to organize political revolutions, influence elections, and raise awareness of social issues. These examples rely on a common process to be effective: the ability to engage users and spread moralized content through online networks. Here, we review evidence that expressions of moral emotion play an important role in the spread of moralized content (a phenomenon we call moral contagion). Next, we propose a psychological model called the motivation, attention, and design (MAD) model to explain moral contagion. The MAD model posits that people have group-identity-based motivations to share moral-emotional content, that such content is especially likely to capture our attention, and that the design of social-media platforms amplifies our natural motivational and cognitive tendencies to spread such content. We review each component of the model (as well as interactions between components) and raise several novel, testable hypotheses that can spark progress on the scientific investigation of civic engagement and activism, political polarization, propaganda and disinformation, and other moralized behaviors in the digital age. 
    more » « less
  3. Sentiment analysis on large-scale social media data is important to bridge the gaps between social media contents and real world activities including political election prediction, individual and public emotional status monitoring and analysis, and so on. Although textual sentiment analysis has been well studied based on platforms such as Twitter and Instagram, analysis of the role of extensive emoji uses in sentiment analysis remains light. In this paper, we propose a novel scheme for Twitter sentiment analysis with extra attention on emojis.We first learn bi-sense emoji embeddings under positive and negative sentimental tweets individually, and then train a sentiment classifier by attending on these bi-sense emoji embeddings with an attention-based long short-term memory network (LSTM). Our experiments show that the bi-sense embedding is effective for extracting sentiment-aware embeddings of emojis and outperforms the state-of-the-art models. We also visualize the attentions to show that the bi-sense emoji embedding provides better guidance on the attention mechanism to obtain a more robust understanding of the semantics and sentiments. 
    more » « less
  4. null (Ed.)
    Rampant fake news on social media has drawn significant attention. Yet, much remains unknown as to how such imbalanced evaluations of self versus others could shape social media users’ perceptions and their subsequent attitudes and behavioral intentions regarding social media news. An online survey ( N = 335) was conducted to examine the third person effect (TPE) in fake news on social media and suggested that users perceived a greater influence of fake news on others than on themselves. However, although users evaluated fake news as socially undesirable, they were still unsupportive of government censorship as a remedy. In addition, the perceived prevalence of fake news leads audiences to reported significantly less willingness to share all news on social media either online or offline. 
    more » « less
  5. Retracted papers often circulate widely on social media, digital news, and other websites before their official retraction. The spread of potentially inaccurate or misleading results from retracted papers can harm the scientific community and the public. Here, we quantify the amount and type of attention 3,851 retracted papers received over time in different online platforms. Comparing with a set of nonretracted control papers from the same journals with similar publication year, number of coauthors, and author impact, we show that retracted papers receive more attention after publication not only on social media but also, on heavily curated platforms, such as news outlets and knowledge repositories, amplifying the negative impact on the public. At the same time, we find that posts on Twitter tend to express more criticism about retracted than about control papers, suggesting that criticism-expressing tweets could contain factual information about problematic papers. Most importantly, around the time they are retracted, papers generate discussions that are primarily about the retraction incident rather than about research findings, showing that by this point, papers have exhausted attention to their results and highlighting the limited effect of retractions. Our findings reveal the extent to which retracted papers are discussed on different online platforms and identify at scale audience criticism toward them. In this context, we show that retraction is not an effective tool to reduce online attention to problematic papers. 
    more » « less