Background As a number of vaccines for COVID-19 are given emergency use authorization by local health agencies and are being administered in multiple countries, it is crucial to gain public trust in these vaccines to ensure herd immunity through vaccination. One way to gauge public sentiment regarding vaccines for the goal of increasing vaccination rates is by analyzing social media such as Twitter. Objective The goal of this research was to understand public sentiment toward COVID-19 vaccines by analyzing discussions about the vaccines on social media for a period of 60 days when the vaccines were started in the United States. Using the combination of topic detection and sentiment analysis, we identified different types of concerns regarding vaccines that were expressed by different groups of the public on social media. Methods To better understand public sentiment, we collected tweets for exactly 60 days starting from December 16, 2020 that contained hashtags or keywords related to COVID-19 vaccines. We detected and analyzed different topics of discussion of these tweets as well as their emotional content. Vaccine topics were identified by nonnegative matrix factorization, and emotional content was identified using the Valence Aware Dictionary and sEntiment Reasoner sentiment analysis library as well as by using sentence bidirectional encoder representations from transformer embeddings and comparing the embedding to different emotions using cosine similarity. Results After removing all duplicates and retweets, 7,948,886 tweets were collected during the 60-day time period. Topic modeling resulted in 50 topics; of those, we selected 12 topics with the highest volume of tweets for analysis. Administration and access to vaccines were some of the major concerns of the public. Additionally, we classified the tweets in each topic into 1 of the 5 emotions and found fear to be the leading emotion in the tweets, followed by joy. Conclusions This research focused not only on negative emotions that may have led to vaccine hesitancy but also on positive emotions toward the vaccine. By identifying both positive and negative emotions, we were able to identify the public's response to the vaccines overall and to news events related to the vaccines. These results are useful for developing plans for disseminating authoritative health information and for better communication to build understanding and trust.
more »
« less
Twitter Sentiment Analysis via Bi-sense Emoji Embedding and Attention-based LSTM
Sentiment analysis on large-scale social media data is important to bridge the gaps between social media contents and real world activities including political election prediction, individual and public emotional status monitoring and analysis, and so on. Although textual sentiment analysis has been well studied based on platforms such as Twitter and Instagram, analysis of the role of extensive emoji uses in sentiment analysis remains light. In this paper, we propose a novel scheme for Twitter sentiment analysis with extra attention on emojis.We first learn bi-sense emoji embeddings under positive and negative sentimental tweets individually, and then train a sentiment classifier by attending on these bi-sense emoji embeddings with an attention-based long short-term memory network (LSTM). Our experiments show that the bi-sense embedding is effective for extracting sentiment-aware embeddings of emojis and outperforms the state-of-the-art models. We also visualize the attentions to show that the bi-sense emoji embedding provides better guidance on the attention mechanism to obtain a more robust understanding of the semantics and sentiments.
more »
« less
- Award ID(s):
- 1704337
- PAR ID:
- 10103948
- Date Published:
- Journal Name:
- Proceedings of ACM Multimedia Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Public sentiment towards the police is a matter of great interest in the United States, as reports on police misconduct are increasingly being published in mass and social media. Here, we test how the public’s perception of the police can be majorly shaped by media reports of police brutality and local crime. We collect data on media coverage of police brutality and local crime, together with Twitter posts from 2010-2020 about the police in 18 metropolitan areas in the country. Using a range of model-free approaches building on transfer entropy analysis, we discover an association between public sentiment towards the police and media coverage of police brutality. We cautiously interpret this relationship as causal. Through this lens, the public’s sentiment towards the police appears to be driven by media-projected images of police misconduct, with no statistically significant evidence for a comparable effect driven by media reports on crimes.more » « less
-
Abstract Twitter is a frequent target for machine learning research and applications. Many problems, such as sentiment analysis, image tagging, and location prediction have been studied on Twitter data. Much of the prior work that addresses these problems within the context of Twitter focuses on a subset of the types of data available, e.g. only text, or text and image. However, a tweet can have several additional components, such as the location and the author, that can also provide useful information for machine learning tasks. In this work, we explore the problem of jointly modeling several tweet components in a common embedding space via task-agnostic representation learning, which can then be used to tackle various machine learning applications. To address this problem, we propose a deep neural network framework that combines text, image, and graph representations to learn joint embeddings for 5 tweet components: body, hashtags, images, user, and location. In our experiments, we use a large dataset of tweets to learn a joint embedding model and use it in multiple tasks to evaluate its performance vs. state-of-the-art baselines specific to each task. Our results show that our proposed generic method has similar or superior performance to specialized application-specific approaches, including accuracy of 52.43% vs. 48.88% for location prediction and recall of up to 15.93% vs. 12.12% for hashtag recommendation.more » « less
-
The paper presents an eye tracking pilot study on understanding how developers read and assess sentiment in twenty-four GitHub pull requests containing emoji randomly selected from five different open source applications. Gaze data was collected on various elements of the pull request page in Google Chrome while the developers were tasked with determining perceived sentiment. The developer perceived sentiment was compared with sentiment output from five state-of-the-art sentiment analysis tools. SentiStrength-SE had the highest performance, with 55.56% of its predictions being agreed upon by study participants. On the other hand, Stanford CoreNLP fared the worst, with only 5.56% of its predictions matching that of the participants'. Gaze data shows the top three areas that developers looked at the most were the comment body, added lines of code, and username (the person writing the comment). The results also show high attention given to emoji in the pull request comment body compared to the rest of the comment text. These results can help provide additional guidelines on the pull request review process.more » « less
-
Sentiment Analysis is a popular text classification task in natural language processing. It involves developing algorithms or machine learning models to determine the sentiment or opinion expressed in a piece of text. The results of this task can be used by business owners and product developers to understand their consumers’ perceptions of their products. Asides from customer feedback and product/service analysis, this task can be useful for social media monitoring (Martin et al., 2021). One of the popular applications of sentiment analysis is for classifying and detecting the positive and negative sentiments on movie reviews. Movie reviews enable movie producers to monitor the performances of their movies (Abhishek et al., 2020) and enhance the decision of movie viewers to know whether a movie is good enough and worth investing time to watch (Lakshmi Devi et al., 2020). However, the task has been under-explored for African languages compared to their western counterparts, ”high resource languages”, that are privileged to have received enormous attention due to the large amount of available textual data. African languages fall under the category of the low resource languages which are on the disadvantaged end because of the limited availability of data that gives them a poor representation (Nasim & Ghani, 2020). Recently, sentiment analysis has received attention on African languages in the Twitter domain for Nigerian (Muhammad et al., 2022) and Amharic (Yimam et al., 2020) languages. However, there is no available corpus in the movie domain. We decided to tackle the problem of unavailability of Yoru`ba´ data for movie sentiment analysis by creating the first Yoru`ba´ sentiment corpus for Nollywood movie reviews. Also, we develop sentiment classification models using state-of-the-art pre-trained language models like mBERT (Devlin et al., 2019) and AfriBERTa (Ogueji et al., 2021).more » « less
An official website of the United States government

