skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for a survival-driven traveling wave in a keystone boreal predator population
Cyclical population dynamics are a common phenomenon in populations worldwide, yet the spatial organization of these cycles remains poorly understood. In this study, we investigated the spatial form and timing of a population collapse from 2018 to 2022 in Canada lynx (Lynx canadensis) across the northwest boreal forest. We analyzed survival, reproduction, and dispersal data from 143 individual global positioning system (GPS) collared lynx from populations across five study sites spanning interior Alaska to determine whether lynx displayed characteristics of a population wave following a concurrent wave in snowshoe hare (Lepus americanus) abundance. Reproductive rates declined across the study sites; however, site-level reproduction declined first in our easternmost study sites, supporting the idea of a population wave. Despite a clear increase in percent of dispersing lynx, there was no evidence of directional bias in dispersal following a hare population wave. Analysis did show increasingly poor survival for lynx dispersing to the east compared to combined resident and westward dispersal. This pattern is consistent with a survival-mediated population wave in lynx as the driver of the theorized population wave. The combination of these factors supports the idea of a hierarchical response to snowshoe hare population declines with a drop in lynx reproduction followed by increased dispersal, and finally reduced survival. All of this evidence is consistent with the expected characteristics of a population undergoing a traveling wave and supports the hypothesis that lynx presence may facilitate and mirror the underlying wave patterns in snowshoe hare.  more » « less
Award ID(s):
2224776
PAR ID:
10571324
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
41
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We studied the diet and reproductive success of Great Horned Owl (Bubo virginianus) at its northern range limit during an apparent high in the Snowshoe Hare (Lepus americanus) population. We performed diet analyses using images from fixed motion sensor cameras and pellet and prey remains collected at active nests, and gathered data on breeding success through camera and visual observations. Pellet data at 14 nests produced 1277 prey records consisting of 65–95% Snowshoe Hare biomass. Great Horned Owls ate 18 different prey types, with overall biomass consisting of 93% mammal, 7% bird, and less than 1% insects, frogs, and fish. The mean prey mass of 714 g (± 34 SE) was 2–25 times the mean prey mass of studies of this species at more southerly latitudes. Camera observations showed that Great Horned Owls delivered an average of 459 g/chick/d (± 75) throughout nesting. This was significantly (P = 0.005) higher than observations from Alberta, at 328–411 g/chick/d. Pellet/prey remains data showed that Great Horned Owls delivering a higher proportion of hares to their nestlings successfully raised more chicks (χ21 = 6.3, P = 0.012), highlighting the importance of this prey in the population dynamics of Great Horned Owl. In addition, we observed Snowshoe Hare removing pellets beneath nest sites, revealing an apparently undocumented bias to the use of pellet analysis. 
    more » « less
  2. Abstract Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species.We quantified the demographic responses of six native perennial prairie species planted within and, for two species, beyond their northern range limits to a 3‐year experimental manipulation of temperature and precipitation at three sites spanning a latitudinal climate gradient in the Pacific Northwest, USA. We estimated population growth rates (λ) using integral projection models and tested for opposing responses to climate in different demographic vital rates (demographic compensation).Where species successfully established reproductive populations, warming negatively affectedλat sites within species' current ranges. Contrarily, warming and drought positively affectedλfor the two species planted beyond their northern range limits. Most species failed to establish a reproductive population at one or more sites within their current ranges, due to extremely low germination and seedling survival. We found little evidence of demographic compensation buffering populations to the climate treatments.Synthesis. These results support predictions across a suite of species that ranges will need to shift with climate change as populations within current ranges become increasingly vulnerable to decline. Species capable of dispersing beyond their leading edges may be more likely to persist, as our evidence suggests that projected changes in climate may benefit such populations. If species are unable to disperse to new habitat on their own, assisted migration may need to be considered to prevent the widespread loss of vulnerable species. 
    more » « less
  3. Abstract AimPhenological mismatches, when life‐events become mistimed with optimal environmental conditions, have become increasingly common under climate change. Population‐level susceptibility to mismatches depends on how phenology and phenotypic plasticity vary across a species’ distributional range. Here, we quantify the environmental drivers of colour moult phenology, phenotypic plasticity, and the extent of phenological mismatch in seasonal camouflage to assess vulnerability to mismatch in a common North American mammal. LocationNorth America. Time period2010–2017. Major taxa studiedSnowshoe hare (Lepus americanus). MethodsWe used > 5,500 by‐catch photographs of snowshoe hares from 448 remote camera trap sites at three independent study areas. To quantify moult phenology and phenotypic plasticity, we used multinomial logistic regression models that incorporated geospatial and high‐resolution climate data. We estimated occurrence of camouflage mismatch between hares’ coat colour and the presence and absence of snow over 7 years of monitoring. ResultsSpatial and temporal variation in moult phenology depended on local climate conditions more so than on latitude. First, hares in colder, snowier areas moulted earlier in the fall and later in the spring. Next, hares exhibited phenotypic plasticity in moult phenology in response to annual variation in temperature and snow duration, especially in the spring. Finally, the occurrence of camouflage mismatch varied in space and time; white hares on dark, snowless background occurred primarily during low‐snow years in regions characterized by shallow, short‐lasting snowpack. Main conclusionsLong‐term climate and annual variation in snow and temperature determine coat colour moult phenology in snowshoe hares. In most areas, climate change leads to shorter snow seasons, but the occurrence of camouflage mismatch varies across the species’ range. Our results underscore the population‐specific susceptibility to climate change‐induced stressors and the necessity to understand this variation to prioritize the populations most vulnerable under global environmental change. 
    more » « less
  4. Background:Schistosomiasis is endemic throughout all regions of Côte d’Ivoire, however, species of the intermediate snail host vary across bioclimatic zones. Hence, a deeper knowledge of the influence of climatic on the life history traits of the intermediate snail host is crucial to understand the environmental determinants of schistosomiasis in a rapidly changing climate. The aim of this study was to run a common garden experiment to assess differences in survival, somatic growth and fecundity of bothBulinus truncatusandBiomphalaria pfeifferisnails collected in three different bioclimatic areas. Methods:A cross-sectional malacological survey was conducted in February 2021 in the south, center and north of Côte d’Ivoire. We sampled two populations ofB. truncatus, the intermediate host snail ofSchistosoma haematobium, from northern and central Côte d’Ivoire, and two populations ofBi.pfeifferi, the intermediate host snail forSchistosoma mansoni, from the southern and central regions. Snails collected at the human-water contact sites were brought in the laboratory where they reproduced. The first generation snails (G1) for each population were reared under the same laboratory conditions, i.e., at 24°C–26°C, during 63 days (9 weeks), to estimate survival, growth, and fecundity. Results:We found that G1Bulinussnails from the north population showed higher survival and growth rates during our study and higher number of eggs at first reproduction, compared to the ones from the central region. ForBi.pfeifferi, no significant difference in survival rate was observed between G1snails from the southern and central populations, whereas those from the south exhibited higher growth rates and higher number of eggs per individual at first reproduction than G1snails from the central population. Conclusion:Our study provides evidence for heterogeneity in snails’ life-history traits in response to temperature among the populations from the three climatic regions. Further experiments from multiple populations are needed to confirm that snails express traits under optimal conditions, can lead to expansion of their geographical range and hence an increase in the risk of schistosomiasis transmission. Transplantation experiments will be required to assess implications of the changing climate on snails persistence, distribution and abundance. 
    more » « less
  5. Abstract Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long‐term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco‐evolutionary processes. We used 8 years of capture–recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage‐specific survival probabilities in the salamanderGyrinophilus porphyriticus. The life cycle ofG. porphyriticusincludes an aquatic larval stage followed by metamorphosis into a semi‐aquatic adult stage. In our study populations, the larval stage lasts 6–10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi‐locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre‐metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection. 
    more » « less