Abstract This article presents the development and testing of a low‐cost (<$60), portable, electrical impedance‐based microflow cytometer for single‐cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single‐cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from −23% to seven times as compared with −17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low‐cost screening technique for sickle cell disease and other diseases in the field and low‐resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.
more »
« less
Neural Network‐Enabled Multiparametric Impedance Signal Templating for High throughput Single‐Cell Deformability Cytometry Under Viscoelastic Extensional Flows
Abstract Cellular biophysical metrics exhibit systematic alterations during processes, such as metastasis and immune cell activation, which can be used to identify and separate live cell subpopulations for targeting drug screening. Image‐based biophysical cytometry under extensional flows can accurately quantify cell deformability based on cell shape alterations but needs extensive image reconstruction, which limits its inline utilization to activate cell sorting. Impedance cytometry can measure these cell shape alterations based on electric field screening, while its frequency response offers functional information on cell viability and interior structure, which are difficult to discern by imaging. Furthermore, 1‐D temporal impedance signal trains exhibit characteristic shapes that can be rapidly templated in near real‐time to extract single‐cell biophysical metrics to activate sorting. We present a multilayer perceptron neural network signal templating approach that utilizes raw impedance signals from cells under extensional flow, alongside its training with image metrics from corresponding cells to derive net electrical anisotropy metrics that quantify cell deformability over wide anisotropy ranges and with minimal errors from cell size distributions. Deformability and electrical physiology metrics are applied in conjunction on the same cell for multiparametric classification of live pancreatic cancer cells versus cancer associated fibroblasts using the support vector machine model.
more »
« less
- Award ID(s):
- 2222933
- PAR ID:
- 10571471
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 21
- Issue:
- 5
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mechanical properties have emerged as a significant label-free marker for characterizing deformable particles such as cells. Here, we demonstrated the first single-particle-resolved, cytometry-like deformability-activated sorting in the continuous flow on a microfluidic chip. Compared with existing deformability-based sorting techniques, the microfluidic device presented in this work measures the deformability and immediately sorts the particles one-by-one in real time. It integrates the transit-time-based deformability measurement and active hydrodynamic sorting onto a single chip. We identified the critical factors that affect the sorting dynamics by modeling and experimental approaches. We found that the device throughput is determined by the summation of the sensing, buffering, and sorting time. A total time of ~100 ms is used for analyzing and sorting a single particle, leading to a throughput of 600 particles/min. We synthesized poly(ethylene glycol) diacrylate (PEGDA) hydrogel beads as the deformability model for device validation and performance evaluation. A deformability-activated sorting purity of 88% and an average efficiency of 73% were achieved. We anticipate that the ability to actively measure and sort individual particles one-by-one in a continuous flow would find applications in cell-mechanotyping studies such as correlational studies of the cell mechanical phenotype and molecular mechanism.more » « less
-
Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post- translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell da- tasets, we developed ‘‘Trellis’’—a highly scalable, tree-based treatment effect analysis method. Trellis single- cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity—shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.more » « less
-
null (Ed.)Herein, we implement and access machine learning architectures to ascertain models that differentiate healthy from apoptotic cells using exclusively forward (FSC) and side (SSC) scatter flow cytometry information. To generate training data, colorectal cancer HCT116 cells were subjected to miR-34a treatment and then classified using a conventional Annexin V/propidium iodide (PI)-staining assay. The apoptotic cells were defined as Annexin V-positive cells, which include early and late apoptotic cells, necrotic cells, as well as other dying or dead cells. In addition to fluorescent signal, we collected cell size and granularity information from the FSC and SSC parameters. Both parameters are subdivided into area, height, and width, thus providing a total of six numerical features that informed and trained our models. A collection of logistical regression, random forest, k-nearest neighbor, multilayer perceptron, and support vector machine was trained and tested for classification performance in predicting cell states using only the six aforementioned numerical features. Out of 1046 candidate models, a multilayer perceptron was chosen with 0.91 live precision, 0.93 live recall, 0.92 live f value and 0.97 live area under the ROC curve when applied on standardized data. We discuss and highlight differences in classifier performance and compare the results to the standard practice of forward and side scatter gating, typically performed to select cells based on size and/or complexity. We demonstrate that our model, a ready-to-use module for any flow cytometry-based analysis, can provide automated, reliable, and stain-free classification of healthy and apoptotic cells using exclusively size and granularity information.more » « less
-
Tumor stiffness has been associated with malignancy and increased risk for metastasis. Extensive research has been done investigating breast cancer cell lines’ responsiveness to surfaces of varying rigidities as well as examining the biophysical properties of breast cancer tumor samples. However, there is a critical gap regarding the relationship between cells’ mechanosensitivity in conjunction to biophysical properties of their extracellular matrix environment. To explore this relationship, we will analyze single-cell mechanosensitivity in comparison to tumor rigidity via shearwave ultrasound elastogrophy (SWE). Given the putative affiliation, we hypothesize that cells expressing invasive mechanosensitivity profiles will correlate with stiffer tumor regions. Using collagen gels containing different cell types, we derived biopsy-sized samples allowing us to optimize single-cell mechanosensitivity analysis. Cells were stained using different dyes corresponding to invasiveness. Subsequently, we analyzed their morphology. Morphological identification within organoid environments would allow for single-cell analysis without the aggression of tissue digestion, though preliminary results suggest high heterogeneity may not allow for confident cell identification solely on morphology. Thus, inquisition into cell viability and integrity was explored by analyzing the effects of tissue digestion with HyQtase on single-cells. Cell count and live-dead stain via flow cytometry allowed for analysis of single-cell viability. Lastly, cell integrity was evaluated by a 2D adhesion assay of isolated cells. The live/dead stain revealed that digestion resulted in isolation of approximately 10% of the original 500,000 cell population with 90–97% of the isolated population being live-cells (invasive and non-invasive respectively). Furthermore, the adhesion assay showed that these isolated single cells retained the ability to adhere to new surfaces, with no difference between the invasive and non-invasive cell types. These results show that cells are able to retain mechanosensitive properties following enzymatic digestion. However, they also suggest our digestion procedure is not aggressive enough to isolate invasive subpopulations that are more strongly imbedded in the original tissues. Development of these novel techniques will allow for accurate and confident analysis of precious human biopsy samples. Insight into the relationship between single-cell mechanosensitivity and tumor biophysical properties could elucidate pathways for metastasis inhibition and prevention.more » « less
An official website of the United States government
