Abstract The light environment underwater can vary dramatically over space and time, challenging the visual systems of aquatic organisms. To meet these challenges, many species shift their spectral sensitivities through changes in visual pigment chromophore and opsin expression. The red shiner (Cyprinella lutrensis) is a cyprinid minnow species that has rapidly expanded its range throughout North America and inhabits a wide range of aquatic habitats. We hypothesized that visual system plasticity has contributed to the red shiner’s success. We investigated plasticity in chromophore usage and opsin expression by collecting red shiners from three Oklahoma creeks that vary in turbidity throughout the year. We characterized the light environment by spectroradiometry, measured chromophore composition of the eyes with high performance liquid chromatography, characterized CYP27C1 enzyme function through heterologous expression, and examined ocular gene expression by RNA sequencing andde novotranscriptome assembly. We observed significantly higher proportions of the long- wavelength shifted A2chromophore in the eyes of fish from the turbid site and in samples collected in winter, suggesting that there may be a temperature-dependent trade-off between chromophore-based spectral tuning and chromophore-related noise. Opsin expression varied between turbid and clear creeks, but did not align with light environment as expected, and the magnitude of these differences was limited compared to the differences in chromophore composition. We confirmed that red shinerCYP27C1catalyzes the conversion of A1to A2, but the ocular expression ofCYP27C1was not well correlated with A2levels in the eye, suggesting conversion may be occurring outside of the eye.
more »
« less
Light environment and seasonal variation in the visual system of the red shiner ( Cyprinella lutrensis )
The light environment underwater can vary dramatically over space and time, challenging the visual systems of aquatic organisms. To meet these challenges, many species shift their spectral sensitivities through changes in visual pigment chromophore composition and opsin expression. The red shiner (Cyprinella lutrensis) is a North American cyprinid minnow species that inhabits waters ranging widely in turbidity and temperature. We hypothesized that the visual system of the red shiner is plastic with chromophore composition and opsin expression varying in response to the environment. To test this hypothesis, we collected red shiners throughout the year from three Oklahoma creeks that vary in turbidity. We characterized the light environment by spectroradiometry, measured chromophore composition of the eyes with high performance liquid chromatography, characterized the mechanisms of chromophore metabolism, and examined ocular gene expression by RNA sequencing and de novo transcriptome assembly. We observed significantly higher proportions of the long-wavelength shifted A2 chromophore in the eyes of fish from the turbid site and in samples collected in winter, suggesting that there may be a temperature-dependent trade-off between chromophore-based spectral tuning and chromophore-related noise. Opsin expression varied between turbid and clear creeks, but did not align with light environment as expected, and the magnitude of these differences was limited compared to the differences in chromophore composition. We confirmed that red shiner CYP27C1 catalyzes the conversion of A1 to A2, but the ocular expression of CYP27C1 was not well correlated with A2 levels in the eye, suggesting conversion may be occurring outside of the eye.
more »
« less
- Award ID(s):
- 2037739
- PAR ID:
- 10571534
- Publisher / Repository:
- The Company of Biologists
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cubomedusae, or box jellyfish, have a complex visual system comprising 24 eyes of four types. Like other cnidarians, their photoreceptor cells are ciliary in morphology, and a range of different techniques together show that at least two of the eye types—the image-forming upper and lower lens eyes—express opsin as the photopigment. The photoreceptors of these two eye types express the same opsin ( Tc LEO ), which belongs to the cnidarian-specific clade cnidops. Interestingly, molecular work has found a high number of opsin genes in box jellyfish, especially in the Caribbean species Tripedalia cystophora , most of which are of unknown function. In the current study, we raised antibodies against three out of five opsins identified from transcriptomic data from T. cystophora and used them to map the expression patterns. These expression patterns suggest one opsin as the photopigment in the slit eyes and another as a putative photoisomerase found in photoreceptors of all four eyes types. The last antibody stained nerve-like cells in the tentacles, in connection with nematocytes, and the radial nerve, in connection with the gonads. This is the first time photopigment expression has been localized to the outer segments of the photoreceptors in a cnidarian ocellus (simple eye). The potential presence of a photoisomerase could be another interesting convergence between box jellyfish and vertebrate photoreceptors, but it awaits final experimental proof.more » « less
-
ABSTRACT The relationship between genotype and phenotype is non-trivial because of the often complex molecular pathways that make it difficult to unambiguously relate phenotypes to specific genotypes. Photopigments, comprising an opsin apoprotein bound to a light-absorbing chromophore, present an opportunity to directly relate the amino acid sequence to an absorbance peak phenotype (λmax). We examined this relationship by conducting a series of site-directed mutagenesis experiments of retinochrome, a non-visual opsin, from two closely related species: the common bay scallop, Argopecten irradians, and the king scallop, Pecten maximus. Using protein folding models, we identified three amino acid sites of likely functional importance and expressed mutated retinochrome proteins in vitro. Our results show that the mutation of amino acids lining the opsin binding pocket is responsible for fine spectral tuning, or small changes in the λmax of these light-sensitive proteins. Mutations resulted in a blue or red shift as predicted, but with dissimilar magnitudes. Shifts ranged from a 16 nm blue shift to a 12 nm red shift from the wild-type λmax. These mutations do not show an additive effect, but rather suggest the presence of epistatic interactions. This work highlights the importance of binding pocket shape in the evolution of spectral tuning and builds on our ability to relate genotypic changes to phenotypes in an emerging model for opsin functional analysis.more » « less
-
Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon ( Salmo salar ), brown trout ( Salmo trutta ), Chinook salmon ( Oncorhynchus tshawytcha ), coho salmon ( Oncorhynchus kisutch ), rainbow trout ( Oncorhynchus mykiss ), and sockeye salmon ( Oncorhynchus nerka )] compared to the northern pike ( Esox lucius ), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λ max values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.more » « less
-
Abstract Sensory drive can lead to the evolution of signals that are optimized to the environment in which they are perceived. However, when environmental conditions change, the interactions between signal, environment, and receiver may also shift, leading to the evolution of a new signal optimum or more categorical shifts in sexual signals (gains or losses). We evaluated how visual systems have evolved following a change in environment and male signal, and whether visual system divergence contributes to reproductive isolation between ancestral and derived types in red and black morphs of Pacific Northwest freshwater threespine stickleback. We found that opsin sequence was tuned to enhance the perceived contrast of black fish on a red-shifted light background, whereas opsin expression was not. Further, we found no evidence for homotypic preferences or assortative mating between colour morphs; males of both morphs were equally successful in no-choice mating contexts, perhaps because black males are more vigorous courters. Together, our results suggest that habitat transitions in black stickleback have led to a shift in sensory-drive dynamics with some aspects of the visual system and behaviour evolving in response to other factors (foraging or predation) or lagging behind the evolution of opsin sequences in red-shifted environments.more » « less
An official website of the United States government
