skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The evolution of sensory systems after signal change in threespine stickleback
Abstract Sensory drive can lead to the evolution of signals that are optimized to the environment in which they are perceived. However, when environmental conditions change, the interactions between signal, environment, and receiver may also shift, leading to the evolution of a new signal optimum or more categorical shifts in sexual signals (gains or losses). We evaluated how visual systems have evolved following a change in environment and male signal, and whether visual system divergence contributes to reproductive isolation between ancestral and derived types in red and black morphs of Pacific Northwest freshwater threespine stickleback. We found that opsin sequence was tuned to enhance the perceived contrast of black fish on a red-shifted light background, whereas opsin expression was not. Further, we found no evidence for homotypic preferences or assortative mating between colour morphs; males of both morphs were equally successful in no-choice mating contexts, perhaps because black males are more vigorous courters. Together, our results suggest that habitat transitions in black stickleback have led to a shift in sensory-drive dynamics with some aspects of the visual system and behaviour evolving in response to other factors (foraging or predation) or lagging behind the evolution of opsin sequences in red-shifted environments.  more » « less
Award ID(s):
1846520 2012041
PAR ID:
10558289
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Volume:
143
Issue:
1
ISSN:
0024-4066
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sexual signals are often transmitted through multiple modalities (e.g., visual and chemical) and under selection from both intended and unintended receivers. Each component of a multimodal signal may be more or less conspicuous to receivers, and signals may evolve to take advantage of available private channels. We recently documented percussive substrate-borne vibrations in the Pacific field cricket (Teleogryllus oceanicus), a species that uses airborne acoustic and chemical signals to attract and secure mates. The airborne signals of Hawaiian T. oceanicus are currently undergoing rapid evolution; at least five novel male morphs have arisen in the past 20 years. Nothing is yet known about the newly discovered percussive substrate-borne vibrations, so we ask “how” they are produced, “who” produces them (e.g., population, morph), “when” they produce them (e.g., whether they are plastic), and “why” (e.g., do they play a role in mating). We show that the vibrations are produced exclusively by males during courtship via foreleg drumming. One novel morph, purring, produces quieter airborne songs and is more likely to drum than the ancestral morph. However, drumming behavior is also contextually plastic for some males; when we removed the ability of males to produce airborne song, ancestral males became more likely to drum, whereas two novel morphs were equally likely to drum regardless of their ability to produce song. Opposite our prediction, females were less likely to mate with males who drummed. We discuss why that might be and describe what we can learn about complex signal evolution from this newly discovered behavior. 
    more » « less
  2. Jennions, Michael D (Ed.)
    Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behavior of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways. 
    more » « less
  3. The light environment underwater can vary dramatically over space and time, challenging the visual systems of aquatic organisms. To meet these challenges, many species shift their spectral sensitivities through changes in visual pigment chromophore composition and opsin expression. The red shiner (Cyprinella lutrensis) is a North American cyprinid minnow species that inhabits waters ranging widely in turbidity and temperature. We hypothesized that the visual system of the red shiner is plastic with chromophore composition and opsin expression varying in response to the environment. To test this hypothesis, we collected red shiners throughout the year from three Oklahoma creeks that vary in turbidity. We characterized the light environment by spectroradiometry, measured chromophore composition of the eyes with high performance liquid chromatography, characterized the mechanisms of chromophore metabolism, and examined ocular gene expression by RNA sequencing and de novo transcriptome assembly. We observed significantly higher proportions of the long-wavelength shifted A2 chromophore in the eyes of fish from the turbid site and in samples collected in winter, suggesting that there may be a temperature-dependent trade-off between chromophore-based spectral tuning and chromophore-related noise. Opsin expression varied between turbid and clear creeks, but did not align with light environment as expected, and the magnitude of these differences was limited compared to the differences in chromophore composition. We confirmed that red shiner CYP27C1 catalyzes the conversion of A1 to A2, but the ocular expression of CYP27C1 was not well correlated with A2 levels in the eye, suggesting conversion may be occurring outside of the eye. 
    more » « less
  4. Abstract The light environment underwater can vary dramatically over space and time, challenging the visual systems of aquatic organisms. To meet these challenges, many species shift their spectral sensitivities through changes in visual pigment chromophore and opsin expression. The red shiner (Cyprinella lutrensis) is a cyprinid minnow species that has rapidly expanded its range throughout North America and inhabits a wide range of aquatic habitats. We hypothesized that visual system plasticity has contributed to the red shiner’s success. We investigated plasticity in chromophore usage and opsin expression by collecting red shiners from three Oklahoma creeks that vary in turbidity throughout the year. We characterized the light environment by spectroradiometry, measured chromophore composition of the eyes with high performance liquid chromatography, characterized CYP27C1 enzyme function through heterologous expression, and examined ocular gene expression by RNA sequencing andde novotranscriptome assembly. We observed significantly higher proportions of the long- wavelength shifted A2chromophore in the eyes of fish from the turbid site and in samples collected in winter, suggesting that there may be a temperature-dependent trade-off between chromophore-based spectral tuning and chromophore-related noise. Opsin expression varied between turbid and clear creeks, but did not align with light environment as expected, and the magnitude of these differences was limited compared to the differences in chromophore composition. We confirmed that red shinerCYP27C1catalyzes the conversion of A1to A2, but the ocular expression ofCYP27C1was not well correlated with A2levels in the eye, suggesting conversion may be occurring outside of the eye. 
    more » « less
  5. While thought to be widely used for animal communication, substrate-borne vibration is relatively unexplored compared to other modes of communication. Substrate-borne vibrations are important for mating decisions in many orthopteran species, yet substrate-borne vibration has not been documented in the Pacific field cricket Teleogryllus oceanicus . Male T. oceanicus use wing stridulation to produce airborne calling songs to attract females and courtship songs to entice females to mate. A new male morph has been discovered, purring crickets, which produce much quieter airborne calling and courtship songs than typical males. Purring males are largely protected from a deadly acoustically orienting parasitoid fly, and they are still able to attract female crickets for mating though typical calling song is more effective for attracting mates. Here, we document the first record of substrate-borne vibration in both typical and purring male morphs of T. oceanicus . We used a paired microphone and accelerometer to simultaneously record airborne and substrate-borne sounds produced during one-on-one courtship trials in the field. Both typical and purring males produced substrate-borne vibrations during courtship that temporally matched the airborne acoustic signal, suggesting that the same mechanism (wing movement) produces both sounds. As previously established, in the airborne channel, purring males produce lower amplitude but higher peak frequency songs than typical males. In the vibrational channel, purring crickets produce songs that are higher in peak frequency than typical males, but there is no difference in amplitude between morphs. Because louder songs (airborne) are preferred by females in this species, the lack of difference in amplitude between morphs in the substrate-borne channel could have implications for mating decisions. This work lays the groundwork for investigating variation in substrate-borne vibrations in T. oceanicus , intended and unintended receiver responses to these vibrations, and the evolution of substrate-borne vibrations over time in conjunction with rapid evolutionary shifts in the airborne acoustic signal. 
    more » « less