skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards a sustainable tomorrow: advancing green practices in organic chemistry
Chemistry in water, leveraging its solvent properties, provides a safer and more sustainable alternative to traditional organic solvent methods.  more » « less
Award ID(s):
2345856
PAR ID:
10571607
Author(s) / Creator(s):
; ;
Publisher / Repository:
RCS
Date Published:
Journal Name:
Green Chemistry
Volume:
26
Issue:
11
ISSN:
1463-9262
Page Range / eLocation ID:
6289 to 6317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a molecular junction immersed in a solvent where the electron transfer is dominated by Marcus-type steps. However, the successive nature of the charge transfer through the junction does not imply that the solvent reaches thermal equilibrium throughout the transport. In our previous work [Kirchberg et al., J. Phys. Chem. Lett. 11, 1729 (2020)], we have determined the nonequilibrium distribution of the solvent where its dynamics, expressed by a friction, is considered in two limiting regimes of fast and slow solvent relaxation. In dependence of the nonequilibrium solvent dynamics, we investigate now the electrical, thermal, and thermoelectric properties of the molecular junction. We show that by suitable tuning of the friction, we can reduce the heat dissipation into the solvent and enhance the heat transfer between the electrodes. Interestingly, we find that the Seebeck coefficient grows significantly by adapting the solvent friction in both regimes. 
    more » « less
  2. Hydrotropic solvents are a promising solvent in biomass processing due to their unique amphiphilic structure. This review summarizes recent advances in hydrotropic solvent systems with their chemical structure, amphiphilicity, roles, and mechanism. 
    more » « less
  3. By tuning the composition of the non-solvent bath used in the non-solvent induced phase inversion process for fabricating thick and low-tortuosity battery electrodes, optimal electrochemical performances and compressive modulus were achieved. 
    more » « less
  4. The removal of small molecular weight charged compounds from aqueous solutions using membrane remains a challenge. In this study, polysulfone (PSf)- and sulfonated polyether ether ketone (SPEEK)-based membranes were fabricated via non-solvent induced phase separation process (NIPS) using N-Methyl-2-Pyrrolidone (NMP) as solvent and water as non-solvent. Membranes were characterized structurally and morphologically, followed by toxicity assessment conducted before and after filtration, both with and without annealing at various pH values to evaluate potential leaching of trapped solvent from the membrane pores. Additionally, membrane performance was characterized using binary mixtures of cationic and anionic dyes. The results demonstrated selective filtration behavior, with cationic dyes being preferentially rejected due to size exclusion and electrostatic interactions. Additionally, a key focus of this work was the investigation of solvent leaching, framed within a Safe(r)-by-Design (SbD) approach aimed at enhancing functional performance while minimizing environmental toxicity. Toxicity assessments using a model organism, a nematode Caenorhabditis elegans, revealed that annealing reduced solvent leaching and thus permeate toxicity, particularly at neutral pH values, by facilitating trapped solvent release prior to membrane use. These findings provide insights for the importance of including an SbD approach during membrane casting to fabricate membranes with desirable properties while minimizing toxicity. 
    more » « less
  5. The solvent can occupy up to ∼70% of macromolecular crystals, and hence, having models that predict solvent distributions in periodic systems could improve the interpretation of crystallographic data. Yet, there are few implicit solvent models applicable to periodic solutes, and crystallographic structures are commonly solved assuming a flat solvent model. Here, we present a newly developed periodic version of the 3D-reference interaction site model (RISM) integral equation method that is able to solve efficiently and describe accurately water and ion distributions in periodic systems; the code can compute accurate gradients that can be used in minimizations or molecular dynamics simulations. The new method includes an extension of the Ornstein–Zernike equation needed to yield charge neutrality for charged solutes, which requires an additional contribution to the excess chemical potential that has not been previously identified; this is an important consideration for nucleic acids or any other charged system where most or all the counter- and co-ions are part of the “disordered” solvent. We present several calculations of proteins, RNAs, and small molecule crystals to show that x-ray scattering intensities and the solvent structure predicted by the periodic 3D-RISM solvent model are in closer agreement with the experiment than are intensities computed using the default flat solvent model in the refmac5 or phenix refinement programs, with the greatest improvement in the 2 to 4 Å range. Prospects for incorporating integral equation models into crystallographic refinement are discussed. 
    more » « less