skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 29, 2026

Title: Exploring the Synthesis and Properties of Fluorinated Cationic Triangulenes and Their Precursors
Abstract Fluorination of tris(2,6‐dimethoxyphenyl)‐methylium ((DMP)3C+) was achieved through the partial defluorination of the methyl 2,3,5,6‐tetrafluorobenzoate via nucleophilic aromatic substitution. Using the fluorinated2F((DMP)3C+) as a precursor, fluorinated tetramethoxy‐ and dimethoxyquin‐ acridinium salts (2F4and2F5respectively) and trioxo‐, azadioxo‐, and diazaoxo‐ triangulenium salts (2F6,2F7and2F8respectively) were synthesized successfully in good to moderate yields. Fluorination induced significant red shifts in absorption (16 to 29 nm) and emission (13 to 41 nm) maxima, and increased electrophilicity as evidenced by lower reduction potentials. X‐ray structural analysis showed distinct packing patterns compared to the non‐fluorinated analogues, indicating the presence of molecular dipoles.  more » « less
Award ID(s):
2102034
PAR ID:
10571665
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
31
Issue:
13
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reactions of triphenylsulfonium chloride ([TPS][Cl]) with various acids in methanol yield the corresponding salts triphenylsulfonium triiodide, C18H15S+·I3or [TPS][I3] (I), triphenylsulfonium perchlorate, C18H15S+·ClO4or [TPS][ClO4] (II), and triphenylsulfonium hexafluorophosphate, C18H15S+·PF6or [TPS][PF6] (III), as crystalline products. These crystals were structurally characterized by single-crystal X-ray diffraction. In all three compounds, the sulfur atom in the triphenylsulfonium cation adopts a distorted trigonal–pyramidal geometry. [TPS][I3] (I) and [TPS][PF6](III) both crystallize in the space groupP21/n, while [TPS][ClO4] (II) crystallizes inP21. The S—C bond lengths are comparable across the three salts, and the S—C—S bond angles are consistently between 102 and 106°. Hirshfeld surface analyses reveal that each structure is dominated by hydrogen-based intermolecular contacts, supplemented by anion-specific interactions such as I...H in (I), O...H in (II), and F...H in (III). These contacts organize the ions into mono-periodic ribbon- or chain-like arrangements. No significant π–π stacking is observed. 
    more » « less
  2. Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
    more » « less
  3. Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=a, Me;b, Et;c,n‐Bu;d,n‐Dec;e, Bn;f,p‐tolCH2) are combined with (p‐tol3P)2PtCl2ortrans‐(p‐tol3P)2Pt((C≡C)2H)2to give the chelatescis‐(R2C(CH2PPh2)2)PtCl2(2 a–f, 94–69 %) orcis‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a–f, 97–54 %). Complexes3 a–dare also available from2 a–dand excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2and3react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a–f; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Clare challenging to remove. Crystal structures of4 a,bshow skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a–fare similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally. 
    more » « less
  4. Abstract Benzene fluorination increases chemoselectivities for Dewar‐benzenes via 4π‐disrotatory electrocyclization. However, the origin of the chemo‐ and regioselectivities of fluorobenzenes remains unexplained because of the experimental limitations in resolving the excited‐state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also currently cost‐prohibitive. We now provide high‐fidelity structural information and reaction outcome predictions with machine‐learning‐accelerated photodynamics simulations of a series of fluorobenzenes, C6F6‐nHn, n=0–3, to study their S1→S0decay in 4 ns. We trained neural networks with XMS‐CASPT2(6,7)/aug‐cc‐pVDZ calculations, which reproduced the S1absorption features with mean absolute errors of 0.04 eV (<2 nm). The predicted nonradiative decay constants for C6F4H2, C6F6, C6F3H3, and C6F5H are 116, 60, 28, and 12 ps, respectively, in broad qualitative agreement with the experiments. Our calculations show that a pseudo Jahn–Teller distortion of fluorinated benzenes leads to an S1local‐minimum region that extends the excited‐state lifetimes of fluorobenzenes. The pseudo Jahn–Teller distortions reduce when fluorination decreases. Our analysis of the S1dynamics shows that the pseudo‐Jahn–Teller distortions promote an excited‐statecis‐transisomerization of a πC‐Cbond. We characterized the surface hopping points from our NAMD simulations and identified instantaneous nuclear momentum as a factor that promotes the electrocyclizations. 
    more » « less
  5. Abstract Two donor–acceptor (D–A) polymers are obtained by coupling difluoro‐ and dichloro‐substituted forms of the electron‐deficient unit BDOPV and the relatively weak donor moiety dichlorodithienylethene (ClTVT). The conductivity and power factors of doped devices are different for the chlorinated and fluorinated BDOPV polymers. A high electron conductivity of 38.3 and 16.1 S cm−1are obtained from the chlorinated and fluorinated polymers with N‐DMBI, respectively, and 12.4 and 2.4 S cm−1are obtained from the chlorinated and fluorinated polymers with CoCp2, respectively, from drop‐cast devices. The corresponding power factors are 22.7, 7.6, 39.5, and 8.0 µW m−1K−2, respectively. Doping of PClClTVT with N‐DMBI results in excellent air stability; the electron conductivity of devices with 50 mol% N‐DMBI as dopant remained up to 4.9 S m−1after 222 days in the air, the longest for an n‐doped polymer stored in air, with a thermoelectric power factor of 9.3 µW m−1K−2. However, the conductivity of PFClTVT‐based devices can hardly be measured after 103 days. These observations are consistent with morphologies determined by grazing incidence wide angle X‐ray scattering and atomic force microscopy. 
    more » « less