Abstract The symmetry breaking in octahedral silsesquioxane and its germanium analogues (Si8O12H8and Ge8O12H8) has been investigated using the M06-2X/6-31++G(3df, 3pd) method and group theory. Both structures undergo$${O}_{h}\downarrow {T}_{h}$$symmetry breaking, characterized by pseudo-Jahn−Teller stabilization energies of 0.22 kcal/mol for Si-POSS and 9.82 kcal/mol for Ge-POSS. Under the influence of the pseudo-Jahn–Teller effect, the distortion vector involves the vibrational a2gmode with imaginary frequency. The distortion forces in Oh-POSS are predominantly localized on the oxygen atoms and driven by the coupling between the lowest unoccupied molecular orbital (a1g) and the highest occupied molecular orbital (a2g). The symmetry breaking is attributed to a pseudo-Jahn–Teller mechanism of type (a2gx a1g) = a2g. The symmetrical substitution of oxygen atoms by X (where X = C, N, P) results in viable Th-Si8X12H8and Th-Ge8X12H8structures. The observed pseudo-Jahn–Teller distortion and substitutional symmetry breaking caused by X indicates a consistent electronic relaxation mechanism, characterized by the formation of C=C, N=N and P=P bonds on the POSS cubic faces, which serves as hallmarks of stability. Additionally, we find that the volume of substituted Th-symmetrical POSS is sufficiently large to accommodate small ions.
more »
« less
Excited‐State Distortions Promote the Photochemical 4π‐Electrocyclizations of Fluorobenzenes via Machine Learning Accelerated Photodynamics Simulations
Abstract Benzene fluorination increases chemoselectivities for Dewar‐benzenes via 4π‐disrotatory electrocyclization. However, the origin of the chemo‐ and regioselectivities of fluorobenzenes remains unexplained because of the experimental limitations in resolving the excited‐state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also currently cost‐prohibitive. We now provide high‐fidelity structural information and reaction outcome predictions with machine‐learning‐accelerated photodynamics simulations of a series of fluorobenzenes, C6F6‐nHn, n=0–3, to study their S1→S0decay in 4 ns. We trained neural networks with XMS‐CASPT2(6,7)/aug‐cc‐pVDZ calculations, which reproduced the S1absorption features with mean absolute errors of 0.04 eV (<2 nm). The predicted nonradiative decay constants for C6F4H2, C6F6, C6F3H3, and C6F5H are 116, 60, 28, and 12 ps, respectively, in broad qualitative agreement with the experiments. Our calculations show that a pseudo Jahn–Teller distortion of fluorinated benzenes leads to an S1local‐minimum region that extends the excited‐state lifetimes of fluorobenzenes. The pseudo Jahn–Teller distortions reduce when fluorination decreases. Our analysis of the S1dynamics shows that the pseudo‐Jahn–Teller distortions promote an excited‐statecis‐transisomerization of a πC‐Cbond. We characterized the surface hopping points from our NAMD simulations and identified instantaneous nuclear momentum as a factor that promotes the electrocyclizations.
more »
« less
- Award ID(s):
- 2118201
- PAR ID:
- 10368799
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 28
- Issue:
- 38
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 , 10 , and 4,4-dimethyl-4 H -1,3,5-thiadiazine-3,5-diium diiodide–1,1,2,2-tetraiodoethene (2/3), 2C 5 H 12 N 4 S 2+ ·4I − ·3C 2 I 4 , 11 . When utilizing the common halogen-bond-donor molecules 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, as well as 1,3,5-trifluoro-2,4,6-triiodobenzene, bifurcated I...S...I interactions were observed, resulting in the formation of isolated rings, chains, and sheets. Tetraiodoethylene (TIE) provided I...S...I cocrystals as well, but further yielded a sulfonium-containing product through the reaction of the S atom with TIE. This particular sulfonium motif is the first of its kind to be structurally characterized, and is stabilized in the solid state through a three-dimensional I...I halogen-bonding network. Thiourea reacted with acetone in the presence of TIE to provide two novel heterocyclic products, again stabilized in the solid state through I...I halogen bonding.more » « less
-
The compound [5,10,15,20-tetrakis(4-fluoro-2,6-dimethylphenyl)porphyrinato]platinum(II), [Pt(C52H40F4N4)] or Pt(II)TFP, has been synthesized and structurally characterized by single-crystal X-ray crystallography. The Pt porphyrin exhibits a long-lived phosphorescent excited state (τ0 = 66 µs), which has been characterized by transient absorption and emission spectroscopy. The phosphorescence is extremely sensitive to oxygen, as reflected by a quenching rate constant of 5.0 × 108 M−1 s−1, and as measured by Stern–Volmer quenching analysis.more » « less
-
Abstract The functionality of atomic quantum emitters is intrinsically linked to their host lattice coordination. Structural distortions that spontaneously break the lattice symmetry strongly impact their optical emission properties and spin-photon interface. Here we report on the direct imaging of charge state-dependent symmetry breaking of two prototypical atomic quantum emitters in mono- and bilayer MoS2by scanning tunneling microscopy (STM) and non-contact atomic force microscopy (nc-AFM). By changing the built-in substrate chemical potential, different charge states of sulfur vacancies (VacS) and substitutional rhenium dopants (ReMo) can be stabilized.$${\mathrm{Vac}}_{{{{{{{{\rm{S}}}}}}}}}^{-1}$$ as well as$${{\mathrm{Re}}}_{{{{{{{{\rm{Mo}}}}}}}}}^{0}$$ and$${\mathrm{Re}}_{{\rm{Mo}}}^{-1}$$ exhibit local lattice distortions and symmetry-broken defect orbitals attributed to a Jahn-Teller effect (JTE) and pseudo-JTE, respectively. By mapping the electronic and geometric structure of single point defects, we disentangle the effects of spatial averaging, charge multistability, configurational dynamics, and external perturbations that often mask the presence of local symmetry breaking.more » « less
-
Structural characteristics are reported for two thioether–ketones,DtdpeandMtdp[2-({2-[(2-oxo-2-phenylethyl)sulfanyl]ethyl}sulfanyl)-1-phenylethan-1-one, C18H18O2S2, and 2-[(2-oxo-2-phenylethyl)sulfanyl]-1-phenylethan-1-one, C16H14O2S], and for related derivatives, the bis(pyridylhydrazones)DhpkandPrpsb[2-((2E)-2-{(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-ylidene]ethylidene}hydrazin-1-yl)pyridine, C18H16N6, and 2-[(2Z,12Z)-3,12-diphenyl-14-(pyridin-2-yl)-5,10-dithia-1,2,13,14-tetraazatetradeca-2,12-dien-1-yl]pyridine, C30H32N6S2], as well as for the macrocyclic thiocarbohydrazide derivativeCtrsp[(3E,8Z)-3,9-dimethyl-1,11-dithia-4,5,7,8-tetraazacyclotetradeca-3,8-diene-6-thione, C10H18N4S3]. Three of the five compounds exhibit conformational enantiomerism in the solid state. The occurrence of intra- and intermolecular hydrogen bonding is commented upon through quantum mechanical (DFT) calculations. Weak C—H...S interactions are noted, while stronger N—H...N and N—H...S hydrogen bridges are delineated.more » « less
An official website of the United States government
