skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Harnessing metastability for grain size control in multiprincipal element alloys during additive manufacturing
Abstract Controlling microstructure in fusion-based metal additive manufacturing (AM) remains a significant challenge due to the many parameters that directly impact solidification condition. Multiprincipal element alloys (MPEAs), also known as high entropy alloys, offer a vast compositional space to design for microstructural engineering due to their chemical complexity and exceptional properties. Here, we use the FeMnCoCr system as a model platform for exploring alloy design in MPEAs for AM. By exploiting the decreasing stability of the face-centered cubic phase with increasing Mn content, we achieve notable grain refinement and breakdown of epitaxial columnar grain growth. We employ a multifaceted approach encompassing thermodynamic modeling, operando synchrotron X-ray diffraction, multiscale microstructural characterization, and mechanical testing to gain insight into the solidification physics and its ramifications on the resulting microstructure of FeMnCoCr MPEAs. This work aims toward tailoring desirable grain sizes and morphology through targeted manipulation of phase stability, thereby advancing microstructure control in AM applications.  more » « less
Award ID(s):
2047218
PAR ID:
10571677
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
16
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As efforts associated with the exploration of multi-principal element alloys (MPEAs) using computational and data-intensive methods continue to rise, experimental realization and validation of the predicted material properties require high-throughput and combinatorial synthesis of these alloys. While additive manufacturing (AM) has emerged as the leading pathway to address these challenges and for rapid prototyping through part fabrication, extensive research on developing and understanding the process-structure-property correlations is imminent. In particular, directed energy deposition (DED) based AM of MPEAs holds great promise because of the boundless compositional variations possible for functionally graded component manufacturing as well as surface cladding. We analyze the recent efforts in DED of MPEAs, the microstructural evolution during the laser metal deposition of various transition and refractory elements, and assess the effects of various processing parameters on the material phase and properties. Our efforts suggest that the development of robust predictive approaches for process parameter selection and modifying the synthesis mechanisms are essential to enable DED platforms to repeatedly produce defect free, stable and designer MPEAs. 
    more » « less
  2. Abstract Refractory complex concentrated alloys (RCCAs) show potential as the next-generation structural materials due to their superior strength in extreme environments. However, RCCAs processed by metal additive manufacturing (AM) typically suffer from process-related challenges surrounding laser material interaction defects and microstructure control. Multimodalin situtechniques (synchrotron X-ray imaging and diffraction and infrared imaging) and melt pool-level simulations were employed to understand rapid solidification pathways in two representative RCCAs: (i) multi-phase BCC + HCP Ti0.4Zr0.4Nb0.1Ta0.1and (ii) single-phase BCC Ti0.486V0.375Cr0.111Ta0.028. As expected, laser material interaction defects followed similar systematic trends in process parameter space for both alloys. Additionally, both alloys formed a single-phase (BCC) microstructure after rapid solidification processing. However, significant differences in microstructure selection between these alloys were discovered, where Ti0.4Zr0.4Nb0.1Ta0.1showed a mixture of equiaxed and columnar grains, while Ti0.486V0.375Cr0.111Ta0.028was dominated by columnar growth. These behaviors were well described by the influence of undercooling effects on columnar-to-equiaxed transition (CET). Distinct microstructure formation in each alloy was verified through CET predictions via analytical melt pool simulations, which showed a ~ 5 × increase degrees in undercooling for Ti0.4Zr0.4Nb0.1Ta0.1compared to Ti0.486V0.375Cr0.111Ta0.028. Overall, these results show that microstructure control based on modulating the freezing range must be balanced with process considerations which resist defect formation, such as solidification crack formation in RCCAs. Graphical abstract 
    more » « less
  3. Owing to the reduced defects, low cost, and high efficiency, the additive manufacturing (AM) technique has attracted increasingly attention and has been applied in high-entropy alloys (HEAs) in recent years. It was found that AM-processed HEAs possess an optimized microstructure and improved mechanical properties. However, no report has been proposed to review the application of the AM method in preparing bulk HEAs. Hence, it is necessary to introduce AM-processed HEAs in terms of applications, microstructures, mechanical properties, and challenges to provide readers with fundamental understanding. Specifically, we reviewed (1) the application of AM methods in the fabrication of HEAs and (2) the post-heat treatment effect on the microstructural evolution and mechanical properties. Compared with the casting counterparts, AM-HEAs were found to have a superior yield strength and ductility as a consequence of the fine microstructure formed during the rapid solidification in the fabrication process. The post-treatment, such as high isostatic pressing (HIP), can further enhance their properties by removing the existing fabrication defects and residual stress in the AM-HEAs. Furthermore, the mechanical properties can be tuned by either reducing the pre-heating temperature to hinder the phase partitioning or modifying the composition of the HEA to stabilize the solid-solution phase or ductile intermetallic phase in AM materials. Moreover, the processing parameters, fabrication orientation, and scanning method can be optimized to further improve the mechanical performance of the as-built-HEAs. 
    more » « less
  4. Microstructure refinement and optimized alloying can improve metallic alloy performance: stable nanocrystalline (NC) alloys with immiscible second phases, e.g., Cu-Ta, are stronger than unstable NC alloys and their coarse-grained (CG) counterparts, but higher melting point matrices are needed. Hypoeutectic, CG Ni-Y-Zr alloys were produced via arc-melting to explore their potential as high-performance materials. Microstructures were studied to determine phases present, local composition and length scales, while heat treatments allowed investigating microstructural stability. Alloys had a stable, hierarchical microstructure with ~250 nm ultrafine eutectic, ~10 µm dendritic arm spacing and ~1 mm grain size. Hardness and uniaxial compression tests revealed that mechanical properties of Ni-0.5Y-1.8Zr (in wt%) were comparable to Inconel 617 despite the small alloying additions, due to its hierarchical microstructure. Uniaxial compression at 600 °C showed that ternary alloys outperformed Ni-Zr and Ni-Y binary alloys in flow stress and hardening rates, which indicates that the Ni17Y2 phase was an effective reinforcement for the eutectic, which supplemented the matrix hardening due to increased solubility of Zr. Results suggest that ternary Ni-Y-Zr alloys hold significant promise for high temperature applications. 
    more » « less
  5. The continued development of metal additive manufacturing (AM) has expanded the engineering metallic alloys for which these processes may be applied, including beta-titanium alloys with desirable strength-to-density ratios. To understand the response of beta-titanium alloys to AM processing, solidification and microstructure evolution needs to be investigated. In particular, thermal gradients (Gs) and solidification velocities (Vs) experienced during AM are needed to link processing to microstructure development, including the columnar-to-equiaxed transition (CET). In this work, in situ synchrotron X-ray radiography of the beta-titanium alloy Ti-10V-2Fe-3Al (wt.%) (Ti-1023) during simulated laser-powder bed fusion (L-PBF) was performed at the Advanced Photon Source at Argonne National Laboratory, allowing for direct determination of Vs. Two different computational modeling tools, SYSWELD and FLOW-3D, were utilized to investigate the solidification conditions of spot and raster melt scenarios. The predicted Vs obtained from both pieces of computational software exhibited good agreement with those obtained from in situ synchrotron X-ray radiography measurements. The model that accounted for fluid flow also showed the ability to predict trends unobservable in the in situ synchrotron X-ray radiography, but are known to occur during rapid solidification. A CET model for Ti-1023 was also developed using the Kurz–Giovanola–Trivedi model, which allowed modeled Gs and Vs to be compared in the context of predicted grain morphologies. Both pieces of software were in agreement for morphology predictions of spot-melts, but drastically differed for raster predictions. The discrepancy is attributable to the difference in accounting for fluid flow, resulting in magnitude-different values of Gs for similar Vs. 
    more » « less