Abstract Seagrass meadows play an important role in “blue carbon” sequestration and storage, but their dynamic metabolism is not fully understood. In a denseZostera marinameadow, we measured benthic O2fluxes by aquatic eddy covariance, water column concentrations of O2, and partial pressures of CO2(pCO2) over 21 full days during peak growing season in April and June. Seagrass metabolism, derived from the O2flux, varied markedly between the 2 months as biomass accumulated and water temperature increased from 16°C to 28°C, triggering a twofold increase in respiration and a trophic shift of the seagrass meadow from being a carbon sink to a carbon source. Seagrass metabolism was the major driver of diurnal fluctuations in water column O2concentration and pCO2, ranging from 173 to 377 μmol L−1and 193 to 859 ppmv, respectively. This 4.5‐fold variation in pCO2was observed despite buffering by the carbonate system. Hysteresis in diurnal water column pCO2vs. O2concentration was attributed to storage of O2and CO2in seagrass tissue, air–water exchange of O2and CO2, and CO2storage in surface sediment. There was a ~ 1:1 mol‐to‐mol stoichiometric relationship between diurnal fluctuations in concentrations of O2and dissolved inorganic carbon. Our measurements showed no stimulation of photosynthesis at high CO2and low O2concentrations, even though CO2reached levels used in IPCC ocean acidification scenarios. This field study does not support the notion that seagrass meadows may be “winners” in future oceans with elevated CO2concentrations and more frequent temperature extremes. 
                        more » 
                        « less   
                    
                            
                            Variability and Controls of p CO 2 and Air‐Water CO 2 Fluxes in a Temperate River
                        
                    
    
            Abstract Measurements of riverine dissolved inorganic carbon, total alkalinity (AT), pH, and the partial pressure of carbon dioxide (pCO2) can provide insights into the biogeochemical function of rivers, including the processes that control biological production, chemical speciation, and air‐water CO2fluxes. The complexity created by these combined processes dictates that studies of inorganic carbon be made over broad spatial and temporal scales. Time‐series data like these are relatively rare, however, because sampling and measurements are labor intensive and, for some variables, good measurement quality is difficult to achieve (e.g., pH). In this study, spectrophotometric pH and ATwere quantified with high precision and accuracy at biweekly to monthly intervals over a four‐year period (2018–2021) along 216 km of the Upper Clark Fork River (UCFR) in the northern Rocky Mountains, USA. We use these and other time‐series data to provide insights into the processes that control river inorganic carbon, with a focus onpCO2and air‐water CO2fluxes. We found that seasonal snowmelt runoff increasedpCO2and that expected increase and decrease ofpCO2due to seasonal heating and cooling were likely offset by an increase and loss of algal biomass, respectively. Overall, the UCFR was a small net source (0.08 ± 0.14 mol m−2 d−1) of CO2to the atmosphere over the four‐year study period with highly variable annual averages (0.0–0.10 mol m−2 d−1). The seasonally correlated, offsetting mechanisms highlight the challenges in predictingpCO2and air‐water CO2fluxes in rivers. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10571691
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Streams and rivers are major sources of greenhouse gases (GHGs) to the atmosphere, as carbon and nitrogen are converted and outgassed during transport. Although our understanding of drivers of individual GHG fluxes has improved with numerous site‐specific studies and global‐scale compilations, our ability to parse out interrelated physical and biogeochemical drivers of gas concentrations is limited by a lack of consistently collected, temporally continuous samples of GHGs and their associated drivers. We present a first analysis of such a dataset collected by the National Ecological Observatory Network across 27 streams and rivers across ecoclimatic domains of the United States. Average concentrations of CO2ranged from 36.9 ± 0.88 to 404 ± 33 μmol L−1, CH4from 0.003 ± 0.0003 to 4.99 ± 0.72 μmol L−1, and N2O from 0.015 to 0.04 μmol L−1and spanned ranges of previous global compilations. Both CO2and CH4were strongly affected by physical drivers including mean air temperature and stream slope, as well as by dissolved oxygen and total nitrogen concentrations. N2O was exclusively correlated with total nitrogen concentrations. Results suggested that potential for gas exchange dominated patterns in gas concentrations at the site level, but contributions of in‐stream aerobic and anaerobic metabolism, and groundwater also likely varied across sites. The highest gas concentrations as well as highest variability occurred in low‐gradient, warmer, and nonperennial systems. These results are a first step in providing unprecedented, continuous estimates of GHG flux constrained by temporally variable physical and biogeochemical drivers of GHG production.more » « less
- 
            Abstract Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC andATto deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 yearpCO2mooring time series where a ~35‐μatm increase inpCO2was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resultingpCO2is sensitive to the ratio ofATand DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derivedATand DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing thepCO2at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC andpCO2in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover.more » « less
- 
            Abstract For the first time the annual carbon budget on the West Antarctic Peninsula shelf was studied with continuously measured CO2system parameters (pH andpCO2) from a subsurface mooring. The temporal evolution of the mixed layer dissolved inorganic carbon (DIC) is investigated via a mass balance. The annual mixed layer DIC inventory change was 1.1 ± 0.4 mol m−2 yr−1, which was mainly regulated by biological drawdown (−2.8 ± 2.4 mol m−2 yr−1), diapycnal eddy diffusion (2.6 ± 1.3 mol m−2 yr−1), entrainment/detrainment (0.9 ± 0.4 mol m−2 yr−1), and air‐water gas exchange (0.4 ± 2.1 mol m−2 yr−1). Significant carbon drawdown was observed in the spring and summer, which was replenished by the physical processes mentioned above. These observations suggest this area is an annual atmosphere CO2sink with a mixed layer net community production of 2.8 ± 2.4 mol m−2 yr−1. These results highlight the significant seasonality in the DIC mass balance and the necessity of year‐round continuous observations for robust assessments of biogeochemical cycling in this region.more » « less
- 
            Abstract The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
