skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 14, 2026

Title: Seasonal variability of surface ocean carbon uptake and chlorophyll‐a concentration in the West Antarctic Peninsula over two decades
The Southern Ocean plays a vital role in global CO2uptake, but the magnitude and even the sign of the flux remain uncertain, and the influence of phytoplankton phenology is underexplored. This study focuses on the West Antarctic Peninsula, a region experiencing rapid climate change, to examine shifts in seasonal carbon uptake. Using 20 years of in situ air‐sea CO2flux and satellite‐derived Chlorophyll‐a, we observe that the seasonal cycles of both air‐sea CO2flux and Chlorophyll‐a intensify poleward. The amplitude of the seasonal cycle of the non‐thermal component of surface ocean pCO2increases with increasing latitude, while the amplitude of the thermal component remains relatively stable. Pronounced biological uptake occurs over the shelf in austral summer despite reduced CO2solubility in warmer waters, which typically limits carbon uptake through physical processes. These findings underscore the prominence of biological mechanisms in regulating carbon fluxes in this rapidly changing region.  more » « less
Award ID(s):
2317774 2224611
PAR ID:
10571859
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Chukchi Sea is an increasing CO2sink driven by rapid climate changes. Understanding the seasonal variation of air‐sea CO2exchange and the underlying mechanisms of biogeochemical dynamics is important for predicting impacts of climate change on and feedbacks by the ocean. Here, we present a unique data set of underway sea surface partial pressure of CO2(pCO2) and discrete samples of biogeochemical properties collected in five consecutive cruises in 2014 and examine the seasonal variations in air‐sea CO2flux and net community production (NCP). We found that thermal and non‐thermal effects have different impacts on sea surfacepCO2and thus the air‐sea CO2flux in different water masses. The Bering summer water combined with meltwater has a significantly greater atmospheric CO2uptake potential than that of the Alaskan Coastal Water in the southern Chukchi Sea in summer, due to stronger biological CO2removal and a weaker thermal effect. By analyzing the seasonal drawdown of dissolved inorganic carbon (DIC) and nutrients, we found that DIC‐based NCP was higher than nitrate‐based NCP by 66%–84% and attributable to partially decoupled C and N uptake because of a variable phytoplankton stoichiometry. A box model with a non‐Redfield C:N uptake ratio can adequately reproduce observedpCO2and DIC, which reveals that, during the intensive growing season (late spring to early summer), 30%–46% CO2uptake in the Chukchi Sea was supported by a flexible stoichiometry of phytoplankton. These findings have important ramification for forecasting the responses of CO2uptake of the Chukchi ecosystem to climate change. 
    more » « less
  2. The Southern Ocean is an important region of ocean carbon uptake, and observations indicate its air‐sea carbon flux fluctuates from seasonal to decadal timescales. Carbon fluxes at regional scales remain highly uncertain due to sparse observation and intrinsic complexity of the biogeochemical processes. The objective of this study is to better understand the mechanisms influencing variability of carbon uptake in the Drake Passage. A regional circulation and biogeochemistry model is configured at the lateral resolution of 10 km, which resolves larger mesoscale eddies where the typical Rossby deformation radius is(50 km). We use this model to examine the interplay between mean and eddy advection, convective mixing, and biological carbon export that determines the surface dissolved inorganic carbon and partial pressure of carbon dioxide variability. Results are validated against in situ observations, demonstrating that the model captures general features of observed seasonal to interannual variability. The model reproduces the two major fronts: Polar Front (PF) and Subantarctic Front (SAF), with locally elevated level of eddy kinetic energy and lateral eddy carbon flux, which play prominent roles in setting the spatial pattern, mean state and variability of the regional carbon budget. The uptake of atmospheric CO2, vertical entrainment during cool seasons, and mean advection are the major carbon sources in the upper 200 m of the region. These sources are balanced by the biological carbon export during warm seasons and mesoscale eddy transfer. Comparing the induced advective carbon fluxes, mean flow dominates in magnitude, however, the amplitude of variability is controlled by the eddy flux. 
    more » « less
  3. Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange. 
    more » « less
  4. Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans. 
    more » « less
  5. The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations. 
    more » « less