skip to main content


Title: Strong Southern Ocean carbon uptake evident in airborne observations
The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations.  more » « less
Award ID(s):
1839218 1501993 1839220
NSF-PAR ID:
10349239
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
374
Issue:
6572
ISSN:
0036-8075
Page Range / eLocation ID:
1275 to 1280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The El Niño‐Southern Oscillation (ENSO) in the equatorial Pacific is the dominant mode of global air‐sea carbon dioxide (CO2) flux interannual variability (IAV). Air‐sea CO2fluxes are driven by the difference between atmospheric and surface ocean pCO2, with variability of the latter driving flux variability. Previous studies found that models in Coupled Model Intercomparison Project Phase 5 (CMIP5) failed to reproduce the observed ENSO‐related pattern of CO2fluxes and had weak pCO2IAV, which were explained by both weak upwelling IAV and weak mean vertical dissolved inorganic carbon (DIC) gradients. We assess whether the latest generation of CMIP6 models can reproduce equatorial Pacific pCO2IAV by validating models against observations‐based data products. We decompose pCO2IAV into thermally and non‐thermally driven anomalies to examine the balance between these competing anomalies, which explain the total pCO2IAV. The majority of CMIP6 models underestimate pCO2IAV, while they overestimate sea surface temperature IAV. Insufficient compensation of non‐thermal pCO2to thermal pCO2IAV in models results in weak total pCO2IAV. We compare the relative strengths of the vertical transport of temperature and DIC and evaluate their contributions to thermal and non‐thermal pCO2anomalies. Model‐to‐observations‐based product comparisons reveal that modeled mean vertical DIC gradients are biased weak relative to their mean vertical temperature gradients, but upwelling acting on these gradients is insufficient to explain the relative magnitudes of thermal and non‐thermal pCO2anomalies.

     
    more » « less
  2. Abstract

    We present airborne observations of the vertical gradient of atmospheric oxygen (δ(O2/N2)) and carbon dioxide (CO2) through the atmospheric boundary layer (BL) over the Drake Passage region of the Southern Ocean, during the O2/N2Ratio and CO2Airborne Southern Ocean Study, from 15 January to 29 February 2016. Gradients were predominately anticorrelated, with excesses ofδ(O2/N2) and depletions of CO2found within the boundary layer, relative to a mean reference height of 1.7 km. Through analysis of the molar ratio of the gradients (GR), the behavior of other trace gases measured in situ, and modeling experiments with the Community Earth System Model, we found that the main driver of gradients was air‐sea exchange of O2and CO2driven by biological processes, more so than solubility effects. An exception to this was in the eastern Drake Passage, where positive GRs were occasionally observed, likely due to the dominance of thermal forcing on the air‐sea flux of both species. GRs were more spatially consistent than the magnitudes of the gradients, suggesting that GRs can provide integrated process constraints over broad spatial scales. Based on the model simulation within a domain bounded by 45°S, 75°S, 100°W, and 45°W, we show that the sampling density of the campaign was such that the observed mean GR (± standard error), −4.0± 0.8 mol O2per mol CO2, was a reasonable proxy for both the mean GR and the mean molar ratio of air‐sea fluxes of O2and CO2during the O2/N2Ratio and CO2Airborne Southern Ocean Study.

     
    more » « less
  3. The Southern Ocean is an important region of ocean carbon uptake, and observations indicate its air‐sea carbon flux fluctuates from seasonal to decadal timescales. Carbon fluxes at regional scales remain highly uncertain due to sparse observation and intrinsic complexity of the biogeochemical processes. The objective of this study is to better understand the mechanisms influencing variability of carbon uptake in the Drake Passage. A regional circulation and biogeochemistry model is configured at the lateral resolution of 10 km, which resolves larger mesoscale eddies where the typical Rossby deformation radius is(50 km). We use this model to examine the interplay between mean and eddy advection, convective mixing, and biological carbon export that determines the surface dissolved inorganic carbon and partial pressure of carbon dioxide variability. Results are validated against in situ observations, demonstrating that the model captures general features of observed seasonal to interannual variability. The model reproduces the two major fronts: Polar Front (PF) and Subantarctic Front (SAF), with locally elevated level of eddy kinetic energy and lateral eddy carbon flux, which play prominent roles in setting the spatial pattern, mean state and variability of the regional carbon budget. The uptake of atmospheric CO2, vertical entrainment during cool seasons, and mean advection are the major carbon sources in the upper 200 m of the region. These sources are balanced by the biological carbon export during warm seasons and mesoscale eddy transfer. Comparing the induced advective carbon fluxes, mean flow dominates in magnitude, however, the amplitude of variability is controlled by the eddy flux.

     
    more » « less
  4. Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air–sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize available pCO2 observations to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long-term pCO2 trends, as evident through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes both seasonally and annually. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. An increase in winter data would aid in reduction of uncertainty levels. On average over the period 2002–2016, data show that carbon uptake has strengthened with annual surface ocean pCO2 trends in the Drake Passage and the broader subpolar Southern Ocean less than the global atmospheric trend. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers away from the region. We also compare DPT data from 2016 and 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017 compared to the Drake Passage Time-series, their pCO2 estimates fall within the range of underway observations given the uncertainty on the estimates. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment assessment of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink. 
    more » « less
  5. Abstract

    The oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2in the next centuries. The slowdown in CO2uptake in the subsequent centuries is caused by the decrease in CO2solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC.

     
    more » « less