skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 31, 2026

Title: Artificial Intelligence of Things: A Survey
The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe that AIoT is emerging as an essential research field at the intersection of IoT and modern AI. It is our hope that this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.  more » « less
Award ID(s):
2312675 2312836
PAR ID:
10571935
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Sensor Networks
Volume:
21
Issue:
1
ISSN:
1550-4859
Page Range / eLocation ID:
1 to 75
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    With the continuous development of technologies, our society is approaching the next stage of industrialization. The Fourth Industrial Revolution also referred to as Industry 4.0, redefines the manufacturing system as a smart and connected machinery system with fully autonomous operation capability. Several advanced cutting-edge technologies, such as cyber-physical systems (CPS), the internet of things (IoT), and artificial intelligence, are believed to the essential components to realize Industry 4.0. In this paper, we focus on a comprehensive review of how artificial intelligence benefits Industry 4.0, including potential challenges and possible solutions. A panoramic introduction of neuromorphic computing is provided, which is one of the most promising and attractive research directions in artificial intelligence. Subsequently, we introduce the vista of the neuromorphic-powered Industry 4.0 system and survey a few research activities on applications of artificial neural networks for IoT. 
    more » « less
  2. null (Ed.)
    The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task. 
    more » « less
  3. This report will discuss implementing artificial intelligence in healthcare. Artificial Intelligence would be beneficial to healthcare because of the endless opportunities it provides. AI can be used to help detect and cure diseases, help patients with a path to treatment and even assist doctors with surgeries. Within this paper I will talk to you about the benefits of AI in healthcare and how it can be implemented using cyber security. In addition, I will conduct interviews with doctors and nurses to hear their perspective on AI in hospitals and how it is needed as well. As well as create a survey for nursing students at my university to see what their viewpoints are on adding AI unto the field of medicine. The best method to incorporate both user input and research into this paper is to use user input to back up the research. User input will be great addition because it gives the readers a real-world opinion on if this topic is valid. 
    more » « less
  4. Bioprinting is a versatile technology gaining rapid adoption in healthcare fields such as tissue engineering, regenerative medicine, drug delivery, and surgical planning. Although the current state of the technology is in its infancy, it is envisioned that its evolution will be enabled by the integration of the following technologies: Internet of Things (IoT), Cloud computing, Artificial Intelligence/Machine Learning (AI/ML), NextGen Networks, and Blockchain. The product of this integration will eventually be a smart bioprinting ecosystem. This paper presents the smart bioprinting ecosystem as a multilayered architecture and reviews the cyber security challenges, vulnerabilities, and threats in every layer. Furthermore, the paper presents privacy preservation solutions and provides a purview of the open research challenges in the smart bioprinting ecosystem. 
    more » « less
  5. Bouffanais, Roland (Ed.)
    Understanding the emergence, co-evolution, and convergence of science and technology (S&T) areas offers competitive intelligence for researchers, managers, policy makers, and others. This paper presents new funding, publication, and scholarly network metrics and visualizations that were validated via expert surveys. The metrics and visualizations exemplify the emergence and convergence of three areas of strategic interest: artificial intelligence (AI), robotics, and internet of things (IoT) over the last 20 years (1998-2017). For 32,716 publications and 4,497 NSF awards, we identify their topical coverage (using the UCSD map of science), evolving co-author networks, and increasing convergence. The results support data-driven decision making when setting proper research and development (R&D) priorities; developing future S&T investment strategies; or performing effective research program assessment. 
    more » « less