skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 14, 2026

Title: Zn(II) Affinity and Structural Conformations of 2His‐2Cys Zinc Finger‐Like Motif Peptide Determined by Ion Mobility–Mass Spectrometry and PM6 Molecular Modeling
ABSTRACT This study focuses on investigating the conformational structure and zinc(II) affinity of a zinc finger‐like motif (ZFM) peptide with the sequence acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐His6‐Cys7, where bold highlights the potential zinc(II) binding sites. Zinc fingers are crucial protein motifs known for their high specificity and affinity for zinc ions. The ZFM peptide's sequence contains the 2His‐2Cys zinc‐binding sites similar to those in natural zinc finger proteins but without the hydrophobic core, making it a valuable model for studying zinc(II)–peptide interactions. Previous research on related peptides showed that collision cross sections and B3LYP modeling predicted that the His‐2Cys‐carboxyl terminus coordination of zinc(II) was more stable than the 2His‐2Cys. Employing a comprehensive approach integrating ion mobility–mass spectrometry and theoretical modeling techniques, various zinc(II) binding modes of the ZFM have been thoroughly compared to ascertain their influence on the competitive threshold collision‐induced dissociation method for measuring the relative gas‐phase Zn(II) affinity of the ZFM peptide. The measured Zn(II) affinity of ZFM is greater than those measured recently for two peptides with similar primary structures, acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7and acetyl‐Asp1‐His2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7, indicating the preference for the His1‐Cys2‐His6‐Cys7side groups for coordinating zinc(II) over the His‐2Cys‐carboxyl terminus or Asp‐His‐Cys‐carboxyl terminus in these related heptapeptides.  more » « less
Award ID(s):
2247511
PAR ID:
10571978
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Mass Spectrometry
Volume:
60
Issue:
3
ISSN:
1076-5174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Chemical dynamics simulations are performed to study the collision induced gas phase unimolecular fragmentation of a model peptide with the sequence acetyl-His 1 -Cys 2 -Gly 3 -Pro 4 -Tyr 5 -His 6 -Cys 7 (analogue methanobactin peptide-5, amb 5 ) and in particular to explore the role of zinc binding in reactivity. Fragmentation pathways, their mechanisms, and collision energy transfer are discussed. The probability distributions of the pathways are compared with the results of the experimental IM-MS, MS/MS spectrum and previous thermal simulations. Collisional activation gives both statistical and non-statistical fragmentation pathways with non-statistical shattering mechanisms accounting for a relevant percentage of reactive trajectories, becoming dominant at higher energies. The tetra-coordination of zinc changes qualitative and quantitative fragmentation, in particular the shattering. The collision energy threshold for the shattering mechanism was found to be 118.9 kcal mol −1 which is substantially higher than the statistical Arrhenius activation barrier of 35.8 kcal mol −1 identified previously during thermal simulations. This difference can be attributed to the tetra-coordinated zinc complex that hinders the availability of the sidechains to undergo direct collision with the Ar projectile. 
    more » « less
  2. Abstract The analog methanobactin (amb) peptide with the sequence ac‐His1‐Cys2‐Gly3‐Pro4‐Tyr5‐His6‐Cys7(amb5A) will bind the metal ions of zinc, nickel, and copper. To further understand how amb5Abinds these metals, we have undertaken a series of studies of structurally related heptapeptides where one or two of the potential His or Cys binding sites have been replaced by Gly, or the C‐terminus has been blocked by amidation. The studies were designed to compare how these metals bind to these sequences in different pH solutions of pH 4.2 to 10 and utilized native electrospray ionization (ESI) with ion mobility‐mass spectrometry (IM‐MS) which allows for the quantitative analysis of the charged species produced during the reactions. The native ESI conditions were chosen to conserve as much of the solution‐phase behavior of the amb peptides as possible and an analysis of how the IM‐MS results compare with the expected solution‐phase behavior is discussed. The oligopeptides studied here have applications for tag‐based protein purification methods, as therapeutics for diseases caused by elevated metal ion levels or as inhibitors for metal‐protein enzymes such as matrix metalloproteinases. 
    more » « less
  3. In this study, we investigate the influence of the Tyr5 and His6 substituent groups on the zinc-binding affinities and conformational properties of a series of acetylated heptapeptides, acetyl-His1-Cys2-Gly3-Pro4-X5-X6-Cys7 focusing on the impacts where X5-X6 are either Tyr5-Gly6, Tyr5-His6, Gly5-Gly6, or Gly5-His6. Utilizing traveling-wave ion mobility-mass spectrometry and molecular modeling techniques we analyze the zinc binding interactions and peptide coordination behavior. The zinc binding peptides (ZBPs) relative zinc affinities were measured across pH 5 to pH 10 by monitoring the solution-phase formation of the [ZBP+Zn(II)] complex by utilizing native MS in negative ion mode to preserve the solution-phase binding of Zn(II) to the peptides. Furthermore, their relative gas-phase Zn(II) affinities were measured using competitive threshold collision-induced dissociation (TCID) of the [ZBP+Zn(II)+NTA] complex, by modeling the two competing dissociation channels: [ZBP+Zn(II)]- + NTA or [Zn(II)+NTA] + ZBP, where NTA is nitrilotriacetic acid. Our examinations also tested whether there was an effect of the formation of the [ZBP+Zn(II)+NTA] complexes from solutions at different pHs, before they are electrosprayed into the gas-phase for the TCID analyses. Both solution- and gas-phase measurements predicted the heptapeptide with the Gly5-His6 residues had the greatest zinc affinity and that the presence of Tyr5 and His6 altered the zinc affinity and induced distinct conformational changes due to changes in the coordination of the zinc. This research enhances our understanding of zinc-peptide interactions, with implications for the design of peptide-based metalloproteins, which may guide the design of novel ZBPs for therapeutic, biotechnological or environmental remediation applications. 
    more » « less
  4. In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer. 
    more » « less
  5. Abstract Three BODIPY‐peptide conjugates designed to target the epidermal growth factor receptor (EGFR) at the extracellular domain were synthesized, and their specificity for binding to EGFR was investigated. Peptide sequences containing seven amino acids, GLARLLT (2)and KLARLLT (4), and 13 amino acids, GYHWYGYTPQNVI (3), were conjugated to carboxyl BODIPY dye (1) by amide bond formation in up to 73% yields. The BODIPY‐peptide conjugates and their “parent” peptides were determined to bind to EGFR experimentally using SPR analysis and were further investigated using computational methods (AutoDock). Results of SPR, competitive binding and docking studies propose that conjugate6including the GYHWYGYTPQNVI sequence binds to EGFR more effectively than conjugates5and7, bearing the smaller peptide sequences. Findings in human carcinoma HEp2 cells overexpressing EGFR showed nontoxic behavior in the presence of activated light (1.5 J cm−2) and in the absence of light for all BODIPYs. Furthermore, conjugate6showed about five‐fold higher accumulation within HEp2 cells compared with conjugates5and7, localizing preferentially in the cell ER and lysosomes. Our findings suggest that BODIPY‐peptide conjugate6is a promising contrast agent for detection of colorectal cancer and potentially other EGFR‐overexpressing cancers. 
    more » « less