Metallothioneins (MTs) are a ubiquitous class of small metal-binding proteins involved in metal homeostasis and detoxification. While known for their high affinity for d 10 metal ions, there is a surprising dearth of thermodynamic data on metals binding to MTs. In this study, Zn 2+ and Cu + binding to mammalian metallothionein-3 (MT-3) were quantified at pH 7.4 by isothermal titration calorimetry (ITC). Zn 2+ binding was measured by chelation titrations of Zn 7 MT-3, while Cu + binding was measured by Zn 2+ displacement from Zn 7 MT-3 with competition from glutathione (GSH). Titrations in multiple buffers enabled a detailed analysis that yielded condition-independent values for the association constant ( K ) and the change in enthalpy (Δ H ) and entropy (Δ S ) for these metal ions binding to MT-3. Zn 2+ was also chelated from the individual α and β domains of MT-3 to quantify the thermodynamics of inter-domain interactions in metal binding. Comparative titrations of Zn 7 MT-2 with Cu + revealed that both MT isoforms have similar Cu + affinities and binding thermodynamics, indicating that Δ H and Δ S are determined primarily by the conserved Cys residues. Inductively coupled plasma mass spectrometry (ICP-MS) analysis and low temperature luminescence measurements of Cu-replete samples showed that both proteins form two Cu 4 + –thiolate clusters when Cu + displaces Zn 2+ under physiological conditions. Comparison of the Zn 2+ and Cu + binding thermodynamics reveal that enthalpically-favoured Cu + , which forms Cu 4 + –thiolate clusters, displaces the entropically-favoured Zn 2+ . These results provide a detailed thermodynamic analysis of d 10 metal binding to these thiolate-rich proteins and quantitative support for, as well as molecular insight into, the role that MT-3 plays in the neuronal chemistry of copper. 
                        more » 
                        « less   
                    
                            
                            Zn-Enhanced Asp-Rich Antimicrobial Peptides: N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides
                        
                    
    
            The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1904705
- PAR ID:
- 10300061
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 22
- Issue:
- 13
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 6971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition.more » « less
- 
            ABSTRACT This study focuses on investigating the conformational structure and zinc(II) affinity of a zinc finger‐like motif (ZFM) peptide with the sequence acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐His6‐Cys7, where bold highlights the potential zinc(II) binding sites. Zinc fingers are crucial protein motifs known for their high specificity and affinity for zinc ions. The ZFM peptide's sequence contains the 2His‐2Cys zinc‐binding sites similar to those in natural zinc finger proteins but without the hydrophobic core, making it a valuable model for studying zinc(II)–peptide interactions. Previous research on related peptides showed that collision cross sections and B3LYP modeling predicted that the His‐2Cys‐carboxyl terminus coordination of zinc(II) was more stable than the 2His‐2Cys. Employing a comprehensive approach integrating ion mobility–mass spectrometry and theoretical modeling techniques, various zinc(II) binding modes of the ZFM have been thoroughly compared to ascertain their influence on the competitive threshold collision‐induced dissociation method for measuring the relative gas‐phase Zn(II) affinity of the ZFM peptide. The measured Zn(II) affinity of ZFM is greater than those measured recently for two peptides with similar primary structures, acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7and acetyl‐Asp1‐His2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7, indicating the preference for the His1‐Cys2‐His6‐Cys7side groups for coordinating zinc(II) over the His‐2Cys‐carboxyl terminus or Asp‐His‐Cys‐carboxyl terminus in these related heptapeptides.more » « less
- 
            S100A12 or Calgranulin C is a homodimeric antimicrobial protein of the S100 family of EF-hand calcium-modulated proteins. S100A12 is involved in many diseases like inflammation, tumor invasion, cancer and neurological disorders like Alzheimer’s disease. The binding of transition metal ions to the protein is important as the sequestering of the metal ion induces conformational changes in the protein, inhibiting the growth of various pathogenic microorganisms. In this work, we probe the Cu(II) binding properties of Calgranulin C. We demonstrate that the two Cu(II) binding sites in Calgranulin C show different coordination environments in solution. Electron spin resonance (ESR) spectra of Cu(II)-bound protein clearly show two distinct components at higher Cu(II):protein ratios, which is indicative of the two different binding environments for the Cu(II) ions. The g|| and A|| values are also different for the two components, indicating that the number of directly coordinated nitrogens in each site differs. Furthermore, we perform Continuous Wave (CW)-titrations to obtain the binding affinity of the Ca(II)-loaded protein to Cu2+ ions. We observe a positive cooperativity in binding of the two Cu(II) ions. In order to further probe the Cu2+ coordination, we also perform Electron Spin Echo Envelope Modulation (ESEEM) experiment. We perform ESEEM at two different fields where one Cu(II) binding site dominates over the other. At both sites we see distinct signatures of Cu(II)-histidine coordination. However, we clearly see that the ESEEM spectra corresponding to the two Cu2+ binding sites are significantly different. There is clear change in the intensity of the double quantum (DQ) peak with respect to the nuclear quadrupole interaction (NQI) peak at the two different fields. Furthermore, ESEEM along with Hyperfine Sublevel Correlation (HYSCORE) show that only one of the two Cu(II) binding sites has backbone coordination, confirming our previous observation. Finally, we perform Double Electron Electron Resonance (DEER) spectroscopy to probe if the difference in binding environment is due to the Cu(II) binding to different sites in the protein. We obtain a distance distribution with a sharp peak at ~ 3 nm and a broad peak at ~ 4 nm. The shorter distance agrees with the Cu(II)-Cu(II) distance expected for a dimer from the crystal structure. The longer distance is consistent with the Cu(II)-Cu(II) distance when oligomerization occurs.more » « less
- 
            In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity, antimicrobial, and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag( i ) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag( i ) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag( i )(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag( i ) into apo-ZF peptides show an Ag( i )–thiolate charge transfer band, indicative of Ag( i )–ZF binding. Fluorescence studies of the Zn( ii )–NCp_7 complex indicate that the Ag( i ) also effectively competes with the Zn( ii ) to drive Zn( ii ) displacement from the ZFs. Upon interaction with AgENMs, Zn( ii ) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag( i ) and AgENMs may alter ZF protein function within the cell.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    