skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A mathematical model for thermal radiation between non-continuous periodic structures and its application in near-field radiation between split ring resonators
Abstract A mathematical model has been developed to study far-field and near-field thermal emission from non-continuous periodic structures. Non-continuous periodic structures with appropriate geometries and materials can support electric or magnetic resonance, idealized for designing far-field perfect absorbers and near-field emitters/absorbers supporting long-distance photon tunneling. However, these structures do not have close format dyadic Green’s function to describe the thermal radiation from randomly fluctuating thermal current. Thus, simulating the near-field radiation spectrum between emitters and collectors patterned with these non-continuous periodic structures is challenging. Though finding eigenmodes of white-noise-like fluctuating thermal current satisfying this specific geometry, we extended the Wiener-Chaotic expansion type of near-field simulation to study far-field and near-field thermal emission from non-continuous periodic structures. After verifications with reference cases, the new mathematical method is applied to study photon tunneling between the emitter and the collector patterned with single-ring split ring resonance rings (SRR) supporting magnetic field resonance. It is observed from the new mathematical model that long photon tunneling can occur under such a configuration through magnetic field coupling between the emitter and collector at the magnetic resonance frequency of SRRs.  more » « less
Award ID(s):
2117953
PAR ID:
10572147
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
58
Issue:
13
ISSN:
0022-3727
Format(s):
Medium: X Size: Article No. 135506
Size(s):
Article No. 135506
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With chemical stability under high temperatures, dielectric materials can be idealized thermal emitters for different energy applications. However, dielectric materials do not support surface waves at near-infrared ranges for longer-distance thermal photon tunneling, which limits their applications in near-field thermal radiation. It is demonstrated in this study that thermal field amplification at near-infrared wavelengths at dielectric surfaces could be achieved through asymmetric Fabry–Perot resonance with anti-reflection coatings or 1D photonic crystal type structures. ⩾100 nm near-infrared thermal photon tunneling can be achieved when these thin film structures are added to the emitter and the collector surfaces. Among these two thin film structures, 1D photonic crystal type periodic structures constructed with the same high refractive index material as the emitter/collector material allow near-field thermal photon tunneling at large parallel wavenumbers. Moreover, the field amplification can be increased by adding more 1D photonic crystal layers to achieve even longer distances near field thermal photon tunneling. 
    more » « less
  2. Near-field radiation can exceed the blackbody radiation limit due to the contributions from evanescent waves. One promising approach to further enhance near-field radiation beyond existing bulk materials is to utilize metamaterials or metasurfaces made from subwavelength plasmonic structures. In this work, we investigate the near-field thermal radiation between complex plasmonic structures with higher-order symmetry and degeneracy, which is crucial for understanding the radiative heat exchange between metamaterials or metasurfaces at extremely small gaps. We demonstrate that the introduction of degeneracy can drastically boost near-field thermal radiation between plasmonic structures. The enhancement of near-field thermal radiation originates from the emergence of degenerate resonance modes and the secondary emission of thermal photons due to the nonzero coupling between the degenerate modes. Our study provides new pathways for designing high-intensity near-field thermal emitters and absorbers for thermophotovoltaics, thermal management, and infrared spectroscopy. 
    more » « less
  3. Abstract All open systems that exchange energy with their environment are non‐Hermitian. Thermal emitters are open systems that can benefit from the rich set of physical phenomena enabled by their non‐Hermitian description. Using phase, symmetry, chirality, and topology, thermal radiation from hot surfaces can be unconventionally engineered to generate light with new states. Such thermal emitters are necessary for a wide variety of applications in sensing and energy conversion. Here, a non‐Hermitian selective thermal emitter is experimentally demonstrated, which exhibits passivePT‐symmetry in thermal emission at 700 °C. Furthermore, the effect of internal phase of the oscillator system on far‐field thermal radiation is experimentally demonstrated. The ability to tune the oscillator phase provides new pathways for both engineering and controlling selective thermal emitters for applications in sensing and energy conversion. 
    more » « less
  4. Two- or three-dimensionally patterned subwavelength structures, also known as metamaterials, have the advantage of arbitrarily engineerable optical properties. In thermophotovoltaic (TPV) applications, metamaterials are commonly used to optimize the emitter’s radiation spectrum for various source temperatures. The output power of a TPV device is proportional to the photon flux, which is proportional to the emitter size. However, using 2D or 3D metamaterials imposes challenges to realizing large emitters since fabricating their subwavelength features typically involves complicated fabrication processes and is highly time-consuming. In this work, we demonstrate a large-area (78 cm2) thermal emitter. This emitter is simply fabricated with one-dimensional layers of silicon (Si) and chromium (Cr), and therefore, it can be easily scaled up to even larger sizes. The emissivity spectrum of the emitter is measured at 802 K, targeting an emission peak in the mid-infrared. The emissivity peak is ∼0.84 at the wavelength of 3.75 μm with a 1.2 μm bandwidth. Moreover, the emission spectrum of our emitter can be tailored for various source temperatures by changing the Si thickness. Therefore, the results of this work can lead to enabling TPV applications with higher output power and lower fabrication cost. 
    more » « less
  5. Silicon carbide (SiC) supports surface phonons in the infrared region of the electromagnetic spectrum where these modes can be thermally emitted. Additionally, the magnitude, spectrum, and direction of thermal radiation from SiC can be controlled by engineering this material at the sub-wavelength scale. For these reasons, SiC nanopillars are of high interest for thermal-radiation tuning. So far, theoretical and experimental studies of thermal emission from SiC nanopillars have been limited to long-pitch arrays with a microscale interpillar spacing. It is not clear how far-field thermal emission from SiC nanopillars is affected when the interparticle spacing reduces to the nanometer scale, where the near-field interaction between adjacent nanopillars arises and the array becomes zero order. In this Letter, we study physical mechanisms of far-field thermal radiation from zero-order arrays of silicon-carbide nanopillars with a nanoscale interpillar spacing. We show that the increased volume of thermal emitters and thermal radiation of the hybrid waveguide-surface-phonon-polariton mode from zero-order arrays increase the spectral emissivity of silicon carbide to values as large as 1 for a wide range of angles. The enhanced, dispersion-less thermal emission from a zero-order SiC array of nano-frustums with an optimized interspacing of 300 nm is experimentally demonstrated. Our study provides insight into thermal radiation from dense nanostructures and has significant implications for thermal management of electronic devices and energy harvesting applications. 
    more » « less