Parity-time-reciprocal scaling (PTX)-symmetry has been recently proposed to tailor the resonance linewidth and gain threshold of non-Hermitian systems with new exhilarating applications, such as coherent perfect absorber-laser (CPAL) and exceptional point (EP)-based devices. Here, we put forward a nearly-lossless, low-index metachannel formed byPTX-symmetric metasurfaces operating at the CPAL point, supporting the undamped weakly-guided fast wave (leaky mode) and thus achieving ultradirective leaky-wave radiation. Moreover, this structure allows for a reconfigurable and tunable radiation angle as well as beamwidth determined by the reciprocally scaled gain-loss parameter. We envision that the proposedPTX-symmetric metasurfaces will shed light on the design of antennas and emitters with ultrahigh directionality, as well as emerging applications enabled by extreme material properties, such as epsilon-near-zero (ENZ) and beyond.
more »
« less
Non‐Hermitian Selective Thermal Emitters using Metal–Semiconductor Hybrid Resonators
Abstract All open systems that exchange energy with their environment are non‐Hermitian. Thermal emitters are open systems that can benefit from the rich set of physical phenomena enabled by their non‐Hermitian description. Using phase, symmetry, chirality, and topology, thermal radiation from hot surfaces can be unconventionally engineered to generate light with new states. Such thermal emitters are necessary for a wide variety of applications in sensing and energy conversion. Here, a non‐Hermitian selective thermal emitter is experimentally demonstrated, which exhibits passivePT‐symmetry in thermal emission at 700 °C. Furthermore, the effect of internal phase of the oscillator system on far‐field thermal radiation is experimentally demonstrated. The ability to tune the oscillator phase provides new pathways for both engineering and controlling selective thermal emitters for applications in sensing and energy conversion.
more »
« less
- Award ID(s):
- 1935446
- PAR ID:
- 10460082
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 31
- Issue:
- 44
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Non-Hermitian systems have attracted significant interest because of their intriguing properties, including exceptional points (EPs), where eigenvalues and the corresponding eigenstates coalesce. In particular, quantum systems with EPs exhibit an enhanced sensitivity to external perturbations, which increases with the order of the EP. Therefore, higher-order EPs hold significant potential for advanced sensing applications, but they are challenging to achieve due to stringent symmetry requirements. In this work, we study the dynamics of a generalized lossy waveguide beam splitter with asymmetric coupling by introducing non-reciprocity as a tunable parameter to achieve higher-order EPs even without dissipation. Moreover, we analyze the evolution of NOON-states under activated non-reciprocity, highlighting its impact on quantum systems. Our results open new pathways for realizing higher-order EPs in non-reciprocal open quantum systems.more » « less
-
Abstract Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Constrained by the principle of reciprocity, conventional phased arrays exhibit identical transmission and reception patterns which limit the scope of their operation. This work presents a controllable space–time acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission and reception patterns that can be tuned independently at multiple channels. A foundational framework is developed to characterize and interpret the emergent nonreciprocal phenomena and is later validated against benchmark numerical experiments. The new phased array selectively alters the directional and frequency content of the incident signal and imparts a frequency conversion between different wave fields, which is further analyzed as a function of the imposed modulation. The space–time acoustic phased array enables unprecedented control over sound waves in a variety of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR telecommunication.more » « less
-
Abstract Exceptional point degeneracies, occurring in non-Hermitian systems, have challenged many well established concepts and led to the development of remarkable technologies. Here, we propose a family of autonomous motors whose operational principle relies on exceptional points via the opportune implementation of a (pseudo-)PT-symmetry and its spontaneous or explicit violation. These motors demonstrate a parameter domain of coexisting high efficiency and maximum work. In the photonic framework, they can be propelled by thermal radiation from the ambient thermal reservoirs and utilized as autonomous self-powered microrobots, or as micro-pumps for microfluidics in biological environments. The same designs can be also implemented with electromechanical elements for harvesting ambient mechanical (e.g., vibrational) noise for powering a variety of auxiliary systems. We expect that our proposal will contribute to the research agenda of energy harvesting by introducing concepts from mathematical and non-Hermitian wave physics.more » « less
-
The geometrical Berry phase is key to understanding the behavior of quantum states under cyclic adiabatic evolution. When generalized to non-Hermitian systems with gain and loss, the Berry phase can become complex and should modify not only the phase but also the amplitude of the state. Here, we perform the first experimental measurements of the adiabatic non-Hermitian Berry phase, exploring a minimal two-site PT-symmetric Hamiltonian that is inspired by the Hatano-Nelson model. We realize this non-Hermitian model experimentally by mapping its dynamics to that of a pair of classical oscillators coupled by real-time measurement-based feedback. As we verify experimentally, the adiabatic non-Hermitian Berry phase is a purely geometrical effect that leads to significant amplification and damping of the amplitude also for noncyclical paths within the parameter space even when all eigenenergies are real. We further observe a non-Hermitian analog of the Aharonov-Bohm solenoid effect, observing amplification and attenuation when encircling a region of broken PT symmetry that serves as a source of imaginary flux. This experiment demonstrates the importance of geometrical effects that are unique to non-Hermitian systems and paves the way towards further studies of non-Hermitian and topological physics in synthetic metamaterials.more » « less
An official website of the United States government
