skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Indirect Measurement of the 3 He(n,p) 3 H Reaction Cross Section at Big Bang Energies
Abstract Neutron-induced nuclear reactions play an important role in the Big Bang Nucleosynthesis. Their excitation functions are, from an experimental point of view, usually difficult to measure. Nevertheless, in the last decades, big efforts have led to a better understanding of their role in the primordial nucleosynthesis network. In this work, we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the3He(n,p)3H reaction after a detailed study of the2H(3He,pt)H three-body process. Data extracted from the present measurement are compared with other published sets. The reaction rate is also calculated, and the impact on the Big Bang nucleosynthesis is examined in detail.  more » « less
Award ID(s):
2310059
PAR ID:
10572163
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
976
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the network of reactions present in the Big Bang nucleosynthesis, the 3 He(n, p) 3 H has an important role which impacts the final 7 Li abundance. The Trojan Horse Method (THM) has been applied to the 3 He(d, pt)H reaction in order to extract the astrophysical S(E)-factor of the 3 He(n, p ) 3 H in the Gamow energy range. The experiment will be described in the present work together with the first preliminary results. 
    more » « less
  2. Abstract During Big Bang nucleosynthesis (BBN) in the first 15 minutes of the Universe, some7Li was created along with isotopes of H and He. The determination of that primordial value of Li can help constrain the conditions at that time. The oldest stars with known ages can be found in globular clusters which have well-determined ages through stellar evolution models. High-resolution spectra of Li have been obtained with the Keck I Telescope and HIRES in several unevolved stars in the clusters M13 and M71 withVmagnitudes of 17.6–17.9. Abundances of Li have been determined with spectrum synthesis techniques and show a range of a factor of 4. We attribute that spread to differences in initial angular momentum resulting in different amounts of spin-down, related mixing, and destruction of Li. Our results are compared with similar results for main-sequence and turnoff stars in other globular clusters. The range in age of these clusters is 11.2–14.2 Gyr for an age span of 3 Gyr. These clusters range in [Fe/H] from −0.75 to −2.24 corresponding to a factor of 30 in metallicity. The maximum in the Li abundance for these unevolved stars in all eight clusters is the same corresponding to Li/H = 3.16 × 10−10, while the predicted Li abundance, based on the deuterium abundance and the BBN predictions, is 5.24 × 10−10
    more » « less
  3. Abstract This paper reports on the possible role of tritium-induced reactions of light nuclei, which may influence nucleosynthesis in short-lived environments such as the third minute of the Big Bang. They may also play a role during the emergence of the neutrino-driven shock front in core collapse supernovae or merging neutron stars at extreme densities. The production of tritium requires a very dynamic and neutron-rich environment; under such conditions tritium-induced reactions are expected to play an important role in the development of specific reaction patterns that could lead to a delayed release of neutrons influencing the associated nucleosynthesis. Here, we summarize different possible reaction sequences and discuss the strength and impact of tritium cluster resonances that occur near the tritium threshold in the respective compound systems. 
    more » « less
  4. Abstract The waves generated by high-energy proton and alpha particles streaming from solar flares into regions of colder plasma are explored using particle-in-cell simulations. Initial distribution functions for the protons and alphas consist of two populations: an energetic, streaming population represented by an anisotropic (T>T), one-sided kappa function and a cold, Maxwellian background population. The anisotropies and nonzero heat fluxes of these distributions destabilize oblique waves with a range of frequencies below the proton cyclotron frequency. These waves scatter particles out of the tails of the initial distributions along constant-energy surfaces in the wave frame. Overlap of the nonlinear resonance widths allows particles to scatter into near-isotropic distributions by the end of the simulations. The dynamics of3He are explored using test particles. Their temperatures can increase by a factor of nearly 20. Propagation of such waves into regions above and below the flare site can lead to heating and transport of3He into the flare acceleration region. The amount of heated3He that will be driven into the flare site is proportional to the wave energy. Using values from our simulations, we show that the abundance of3He driven into the acceleration region should approach that of4He in the corona. Therefore, waves driven by energetic ions produced in flares are a strong candidate to drive the enhancements of3He observed in impulsive flares. 
    more » « less
  5. Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer. 
    more » « less