In the network of reactions present in the Big Bang nucleosynthesis, the 3 He(n, p) 3 H has an important role which impacts the final 7 Li abundance. The Trojan Horse Method (THM) has been applied to the 3 He(d, pt)H reaction in order to extract the astrophysical S(E)-factor of the 3 He(n, p ) 3 H in the Gamow energy range. The experiment will be described in the present work together with the first preliminary results.
more »
« less
This content will become publicly available on November 1, 2025
Indirect Measurement of the 3 He(n,p) 3 H Reaction Cross Section at Big Bang Energies
Abstract Neutron-induced nuclear reactions play an important role in the Big Bang Nucleosynthesis. Their excitation functions are, from an experimental point of view, usually difficult to measure. Nevertheless, in the last decades, big efforts have led to a better understanding of their role in the primordial nucleosynthesis network. In this work, we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the3He(n,p)3H reaction after a detailed study of the2H(3He,pt)H three-body process. Data extracted from the present measurement are compared with other published sets. The reaction rate is also calculated, and the impact on the Big Bang nucleosynthesis is examined in detail.
more »
« less
- Award ID(s):
- 2310059
- PAR ID:
- 10572163
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 976
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The observation ofγrays from the decay of44Ti in the remnants of core-collapse supernovae (CCSNe) provides crucial information regarding the nucleosynthesis occurring in these events, as44Ti production is sensitive to CCSNe conditions. The final abundance of44Ti is also sensitive to specific nuclear input parameters, one of which is the57Ni(p,γ)58Cu reaction rate. A precise rate for57Ni(p,γ)58Cu is thus critical if44Ti production is to be an effective probe into CCSNe. To experimentally constrain the57Ni(p,γ)58Cu rate, the structure properties of58Cu were measured via the58Ni(3He,t)58Cu*(γ) reaction using GODDESS (GRETINA ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory’s ATLAS facility. Details of the experiment, ongoing analysis, and plans are presented.more » « less
-
Abstract During Big Bang nucleosynthesis (BBN) in the first 15 minutes of the Universe, some7Li was created along with isotopes of H and He. The determination of that primordial value of Li can help constrain the conditions at that time. The oldest stars with known ages can be found in globular clusters which have well-determined ages through stellar evolution models. High-resolution spectra of Li have been obtained with the Keck I Telescope and HIRES in several unevolved stars in the clusters M13 and M71 withVmagnitudes of 17.6–17.9. Abundances of Li have been determined with spectrum synthesis techniques and show a range of a factor of 4. We attribute that spread to differences in initial angular momentum resulting in different amounts of spin-down, related mixing, and destruction of Li. Our results are compared with similar results for main-sequence and turnoff stars in other globular clusters. The range in age of these clusters is 11.2–14.2 Gyr for an age span of 3 Gyr. These clusters range in [Fe/H] from −0.75 to −2.24 corresponding to a factor of 30 in metallicity. The maximum in the Li abundance for these unevolved stars in all eight clusters is the same corresponding to Li/H = 3.16 × 10−10, while the predicted Li abundance, based on the deuterium abundance and the BBN predictions, is 5.24 × 10−10.more » « less
-
Abstract The waves generated by high-energy proton and alpha particles streaming from solar flares into regions of colder plasma are explored using particle-in-cell simulations. Initial distribution functions for the protons and alphas consist of two populations: an energetic, streaming population represented by an anisotropic (T∥>T⊥), one-sided kappa function and a cold, Maxwellian background population. The anisotropies and nonzero heat fluxes of these distributions destabilize oblique waves with a range of frequencies below the proton cyclotron frequency. These waves scatter particles out of the tails of the initial distributions along constant-energy surfaces in the wave frame. Overlap of the nonlinear resonance widths allows particles to scatter into near-isotropic distributions by the end of the simulations. The dynamics of3He are explored using test particles. Their temperatures can increase by a factor of nearly 20. Propagation of such waves into regions above and below the flare site can lead to heating and transport of3He into the flare acceleration region. The amount of heated3He that will be driven into the flare site is proportional to the wave energy. Using values from our simulations, we show that the abundance of3He driven into the acceleration region should approach that of4He in the corona. Therefore, waves driven by energetic ions produced in flares are a strong candidate to drive the enhancements of3He observed in impulsive flares.more » « less
-
Abstract Using a recently compiled global marine data set of dissolved helium isotopes and helium and neon concentrations, we make an estimate of the inventory of hydrothermal3He in the Southern Ocean to be 4.9 ± 0.6 × 104 moles. Under the assumption that the bulk of the hydrothermally sourced3He is upwelled there, we use recent estimates of the global hydrothermal3He flux to determine ane‐folding residence time of 99 ± 18 years, depending on assumptions of water mass and upwelling boundaries. Our estimate is within the broad range of values obtained from recent Southern Ocean circulation models.more » « less