Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Carl Friedrich von Weizsäcker published two important papers on topics of nuclear astrophysics in 1937 and 1938 before he turned his attention elsewhere motivated by the discovery of fission and the outbreak of war in 1939. It seems, however, that he continued to actively think about issues related to astrophysics, namely the discussion and role of neutron stars and cosmology. Both are contemporary topics today. This paper presents the development of Weizsäcker’s thoughts in the years between 1935 and 1945, making use of his personal notes and letters.more » « lessFree, publicly-accessible full text available April 3, 2026
-
Abstract The$$^{90}$$ Zr(p,$$\gamma $$ )$$^{91}$$ Nb reaction is one of the important reactions in the$$A\approx 90$$ mass region and part of the nucleosynthesis path responsible for production of$$^{92}$$ Mo during the$$\gamma $$ -process. Discrepant data in the literature provide a cross section that varies up to 30% within the Gamow window for the$$^{90}$$ Zr(p,$$\gamma $$ )$$^{91}$$ Nb reaction. Thus, the cross section measurements of$$^{90}$$ Zr(p,$$\gamma $$ )$$^{91}$$ Nb reaction were revisited using the$$\gamma $$ -summing technique. The results are consistent with the lower-value cross sections found in the literature. Based on the new data an updated reaction rate for$$^{90}$$ Zr(p,$$\gamma $$ )$$^{91}$$ Nb is provided that is up to 20% higher than that obtained from thenon-smokercode.more » « less
-
Abstract Neutron-induced nuclear reactions play an important role in the Big Bang Nucleosynthesis. Their excitation functions are, from an experimental point of view, usually difficult to measure. Nevertheless, in the last decades, big efforts have led to a better understanding of their role in the primordial nucleosynthesis network. In this work, we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the3He(n,p)3H reaction after a detailed study of the2H(3He,pt)H three-body process. Data extracted from the present measurement are compared with other published sets. The reaction rate is also calculated, and the impact on the Big Bang nucleosynthesis is examined in detail.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract A new type of radio frequency (RF) timing technique is presented. It is based on a helical deflector, which performs circular or elliptical sweeps of photo- or secondary electrons, accelerated to keV energies, by means of RF fields in the 500–1000 MHz range. By converting a time distribution of the electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing, similar to streak cameras. Detection of the scanned electrons, using a position sensitive detector based on microchannel plates and a delay line anode, resulted in a timing resolution of 10 ps, which can be potentially improved to 1 ps. RF-Timer-based single photon and heavy ion detectors have potential applications in different fields of science and industry, which include high energy nuclear physics and imaging technologies. This technique could play a crucial role in developing of sub 10 ps Time-of-Flight Positron Emission Tomography.more » « less
-
Abstract The Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Gran Sasso (LNGS) is one of the largest underground physics laboratory, a very peculiar environment suited for experiments in Astroparticle Physics, Nuclear Physics and Fundamental Symmetries. The newly established Bellotti Ion Beam facility represents a major advance in the possibilities of studying nuclear processes in an underground environment. A workshop was organized at LNGS in the framework of the Nuclear Physics Mid Term Plan in Italy, an initiative of the Nuclear Physics Division of the Instituto Nazionale di Fisica Nucleare to discuss the opportunities that will be possible to study in the near future by employing state-of-the-art detection systems. In this report, a detailed discussion of the outcome of the workshop is presented.more » « less
-
Abstract The nucleus is a complex many-body system with some remarkable emergent collective properties of multiple nucleons acting together. Bohr and Mottelson [1] provided a description of collective motion in nuclei based on geometrical shapes with superimposed oscillations around those shapes. Later, Lie algebras and symmetries were used to describe nuclear dynamics [2], followed by advances in the shell model approach [3] with new effective nucleon-nucleon two- and three-body interactions, and more recently with Hartree-Fock-Bogoliubov approximations within the extended generator coordinate method [4]. Yet, the underlying science question has remained the same. In nuclei, where there is explicit deformation in the ground state, “are the low-lying 0+states collective vibrations built on the ground state or are they minima of a coexisting shape?” Ref. [4] has shown that for a significant percentage ofK= 0+excitations built on the deformed ground state (g.s.) should, in fact, be a collective vibration. The question has remained open due to sufficiently convincing experimental data with lifetimes, transfer reaction cross sections, andE0 transitions [5]. This paper summarizes the experimental situation regarding the lifetimes of 0+states.more » « less
-
Abstract The20Ne(α,p)23Na reaction rate is important in determining the final abundances of various nuclei produced in type Ia supernovae. Previously, the ground state cross section was calculated from time reversal reaction experiments using detailed balance. The reaction rates extracted from these studies do not consider contributions from the population of excited states, and therefore, are only estimates. A resonance scan, populating both the ground and first excited states, was performed for the20Ne(α,p)23Na reaction, measuring between 2.9 and 5 MeV center of mass energies at the Nuclear Science Lab at the University of Notre Dame. Data analysis is underway and preliminary results show substantial contribution from the excited state reaction.more » « less
-
Abstract The abundance and distribution of44Ti tells us about the nature of the core-collapse supernovae explosions. There is a need to understand the nuclear reaction network creating and destroying44Ti in order to use it as a probe for the explosive mechanism. The44Ti(α, p)47V reaction is a very important reaction and it controls the destruction of44Ti. Difficulties with direct measurements have led to an attempt to study this reaction indirectly. Here, the first step of the indirect study which is the identification of levels of the compound nucleus48Cr is presented. A 100-MeV proton beam was incident on a50Cr target. States in48Cr were populated in the50Cr(p, t)48Cr reaction. The tritons were momentum-analysed in the K600 Q2D magnetic spectrometer at iThemba LABS.more » « less
-
Abstract The observation ofγrays from the decay of44Ti in the remnants of core-collapse supernovae (CCSNe) provides crucial information regarding the nucleosynthesis occurring in these events, as44Ti production is sensitive to CCSNe conditions. The final abundance of44Ti is also sensitive to specific nuclear input parameters, one of which is the57Ni(p,γ)58Cu reaction rate. A precise rate for57Ni(p,γ)58Cu is thus critical if44Ti production is to be an effective probe into CCSNe. To experimentally constrain the57Ni(p,γ)58Cu rate, the structure properties of58Cu were measured via the58Ni(3He,t)58Cu*(γ) reaction using GODDESS (GRETINA ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory’s ATLAS facility. Details of the experiment, ongoing analysis, and plans are presented.more » « less
-
Free, publicly-accessible full text available June 1, 2026