This paper introduces a min-max optimization formulation for the Graph Signal Denoising (GSD) problem. In this formulation, we first maximize the second term of GSD by introducing perturbations to the graph structure based on Laplacian distance and then minimize the overall loss of the GSD. By solving the min-max optimization problem, we derive a new variant of the Graph Diffusion Convolution (GDC) architecture, called Graph Adversarial Diffusion Convolution (GADC). GADC differs from GDC by incorporating an additional term that enhances robustness against adversarial attacks on the graph structure and noise in node features. Moreover, GADC improves the performance of GDC on heterophilic graphs. Extensive experiments demonstrate the effectiveness of GADC across various datasets. Code is available at https://github.com/SongtaoLiu0823/GADC. 
                        more » 
                        « less   
                    
                            
                            Graph Adversarial Diffusion Convolution
                        
                    
    
            This paper introduces a min-max optimization formulation for the Graph Signal Denoising (GSD) problem. In this formulation, we first maximize the second term of GSD by introducing perturbations to the graph structure based on Laplacian distance and then minimize the overall loss of the GSD. By solving the min-max optimization problem, we derive a new variant of the Graph Diffusion Convolution (GDC) architecture, called Graph Adversarial Diffusion Convolution (GADC). GADC differs from GDC by incorporateing an additional term that enhances robustness against adversarial attacks on the graph structure and noise in node features. Moreover, GADC improves the performance of GDC on heterophilic graphs. Extensive experiments demonstrate the effectiveness of GADC across various datasets. Code is available at https://github.com/SongtaoLiu0823/GADC. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2339524
- PAR ID:
- 10572221
- Publisher / Repository:
- Proceedings of the 41st International Conference on Machine Learning (ICML)
- Date Published:
- ISBN:
- 000-00-00000-00-0
- Format(s):
- Medium: X
- Location:
- Vienna, Austria
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Estimators based on Wasserstein distributionally robust optimization are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance from the underlying empirical measure in a Wasserstein sense. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied; for example, we show that distributionally robust estimators regularize the loss based on its derivative, and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation.more » « less
- 
            null (Ed.)The use of min-max optimization in the adversarial training of deep neural network classifiers, and the training of generative adversarial networks has motivated the study of nonconvex-nonconcave optimization objectives, which frequently arise in these applications. Unfortunately, recent results have established that even approximate first-order stationary points of such objectives are intractable, even under smoothness conditions, motivating the study of min-max objectives with additional structure. We introduce a new class of structured nonconvex-nonconcave min-max optimization problems, proposing a generalization of the extragradient algorithm which provably converges to a stationary point. The algorithm applies not only to Euclidean spaces, but also to general ℓ𝑝-normed finite-dimensional real vector spaces. We also discuss its stability under stochastic oracles and provide bounds on its sample complexity. Our iteration complexity and sample complexity bounds either match or improve the best known bounds for the same or less general nonconvex-nonconcave settings, such as those that satisfy variational coherence or in which a weak solution to the associated variational inequality problem is assumed to exist.more » « less
- 
            https://youtu.be/79Py8KU4_k0 (Ed.)We consider statistical methods that invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems. Acknowledging the distributional uncertainty in learning from limited samples, the min-max formulations introduce an adversarial inner player to explore unseen covariate data. The resulting distributionally robust optimization (DRO) formulations, which include Wasserstein DRO formulations (our main focus), are specified using optimal transportation phenomena. Upon describing how these infinite-dimensional min-max problems can be approached via a finite-dimensional dual reformulation, this tutorial moves into its main component, namely, explaining a generic recipe for optimally selecting the size of the adversary’s budget. This is achieved by studying the limit behavior of an optimal transport projection formulation arising from an inquiry on the smallest confidence region that includes the unknown population risk minimizer. Incidentally, this systematic prescription coincides with those in specific examples in high-dimensional statistics and results in error bounds that are free from the curse of dimensions. Equipped with this prescription, we present a central limit theorem for the DRO estimator and provide a recipe for constructing compatible confidence regions that are useful for uncertainty quantification. The rest of the tutorial is devoted to insights into the nature of the optimizers selected by the min-max formulations and additional applications of optimal transport projections.more » « less
- 
            Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    