We propose and analyze a reinforcement learning principle that approximates the Bellman equations by enforcing their validity only along an user-defined space of test functions. Focusing on applications to model-free offline RL with function approximation, we exploit this principle to derive confidence intervals for off-policy evaluation, as well as to optimize over policies within a prescribed policy class. We prove an oracle inequality on our policy optimization procedure in terms of a trade-off between the value and uncertainty of an arbitrary comparator policy. Different choices of test function spaces allow us to tackle different problems within a common framework. We characterize the loss of efficiency in moving from on-policy to off-policy data using our procedures, and establish connections to concentrability coefficients studied in past work. We examine in depth the implementation of our methods with linear function approximation, and provide theoretical guarantees with polynomial-time implementations even when Bellman closure does not hold. 
                        more » 
                        « less   
                    
                            
                            Enhancing value function estimation through first-order state-action dynamics in offline reinforcement learning
                        
                    
    
            In offline reinforcement learning (RL), updating the value function with the discrete-time Bellman Equation often encounters challenges due to the limited scope of available data. This limitation stems from the Bellman Equation, which cannot accurately predict the value of unvisited states. To address this issue, we have introduced an innovative solution that bridges the continuousand discrete-time RL methods, capitalizing on their advantages. Our method uses a discrete-time RL algorithm to derive the value function from a dataset while ensuring that the function’s first derivative aligns with the local characteristics of states and actions, as defined by the HamiltonJacobi-Bellman equation in continuous RL. We provide practical algorithms for both deterministic policy gradient methods and stochastic policy gradient methods. Experiments on the D4RL dataset show that incorporating the first-order information significantly improves policy performance for offline RL problems. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2238839
- PAR ID:
- 10572319
- Publisher / Repository:
- International Conference of Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In offline reinforcement learning (RL), a learner leverages prior logged data to learn a good policy without interacting with the environment. A major challenge in applying such methods in practice is the lack of both theoretically principled and practical tools for model selection and evaluation. To address this, we study the problem of model selection in offline RL with value function approximation. The learner is given a nested sequence of model classes to minimize squared Bellman error and must select among these to achieve a balance between approximation and estimation error of the classes. We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic factors. The algorithm, MODBE, takes as input a collection of candidate model classes and a generic base offline RL algorithm. By successively eliminating model classes using a novel one-sided generalization test, MODBE returns a policy with regret scaling with the complexity of the minimally complete model class. In addition to its theoretical guarantees, it is conceptually simple and computationally efficient, amounting to solving a series of square loss regression problems and then comparing relative square loss between classes. We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.more » « less
- 
            We study off-policy evaluation (OPE) for partially observable MDPs (POMDPs) with general function approximation. Existing methods such as sequential im- portance sampling estimators suffer from the curse of horizon in POMDPs. To circumvent this problem, we develop a novel model-free OPE method by introduc- ing future-dependent value functions that take future proxies as inputs and perform a similar role to that of classical value functions in fully-observable MDPs. We derive a new off-policy Bellman equation for future-dependent value functions as conditional moment equations that use history proxies as instrumental variables. We further propose a minimax learning method to learn future-dependent value functions using the new Bellman equation. We obtain the PAC result, which implies our OPE estimator is close to the true policy value under Bellman completeness, as long as futures and histories contain sufficient information about latent states.more » « less
- 
            We study representation learning for Offline Reinforcement Learning (RL), focusing on the important task of Offline Policy Evaluation (OPE). Recent work shows that, in contrast to supervised learning, realizability of the Q-function is not enough for learning it. Two sufficient conditions for sample-efficient OPE are Bellman completeness and coverage. Prior work often assumes that representations satisfying these conditions are given, with results being mostly theoretical in nature. In this work, we propose BCRL, which directly learns from data an approximately linear Bellman complete representation with good coverage. With this learned representation, we perform OPE using Least Square Policy Evaluation (LSPE) with linear functions in our learned representation. We present an end-to-end theoretical analysis, showing that our two-stage algorithm enjoys polynomial sample complexity provided some representation in the rich class considered is linear Bellman complete. Empirically, we extensively evaluate our algorithm on challenging, image-based continuous control tasks from the Deepmind Control Suite. We show our representation enables better OPE compared to previous representation learning methods developed for off-policy RL (e.g., CURL, SPR). BCRL achieve competitive OPE error with the state-of-the-art method Fitted Q-Evaluation (FQE), and beats FQE when evaluating beyond the initial state distribution. Our ablations show that both linear Bellman complete and coverage components of our method are crucial.more » « less
- 
            Deep reinforcement learning (RL) has shown remarkable success in specific offline decision-making scenarios, yet its theoretical guarantees are still under development. Existing works on offline RL theory primarily emphasize a few trivial settings, such as linear MDP or general function approximation with strong assumptions and independent data, which lack guidance for practical use. The coupling of deep learning and Bellman residuals makes this problem challenging, in addition to the difficulty of data dependence. In this paper, we establish a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation with C-mixing data regarding the structure of networks, the dimension of datasets, and the concentrability of data coverage, under mild assumptions. Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight. This result demonstrates the explicit efficiency of deep adversarial offline RL frameworks. We utilize the empirical process tool for C-mixing sequences and the neural network approximation theory for the Holder class to achieve this. We also develop methods to bound the Bellman estimation error caused by function approximation with empirical Bellman constraint perturbations. Additionally, we present a result that lessens the curse of dimensionality using data with low intrinsic dimensionality and function classes with low complexity. Our estimation provides valuable insights into the development of deep offline RL and guidance for algorithm model design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    