skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Learning Bellman Complete Representations for Offline Policy Evaluation
We study representation learning for Offline Reinforcement Learning (RL), focusing on the important task of Offline Policy Evaluation (OPE). Recent work shows that, in contrast to supervised learning, realizability of the Q-function is not enough for learning it. Two sufficient conditions for sample-efficient OPE are Bellman completeness and coverage. Prior work often assumes that representations satisfying these conditions are given, with results being mostly theoretical in nature. In this work, we propose BCRL, which directly learns from data an approximately linear Bellman complete representation with good coverage. With this learned representation, we perform OPE using Least Square Policy Evaluation (LSPE) with linear functions in our learned representation. We present an end-to-end theoretical analysis, showing that our two-stage algorithm enjoys polynomial sample complexity provided some representation in the rich class considered is linear Bellman complete. Empirically, we extensively evaluate our algorithm on challenging, image-based continuous control tasks from the Deepmind Control Suite. We show our representation enables better OPE compared to previous representation learning methods developed for off-policy RL (e.g., CURL, SPR). BCRL achieve competitive OPE error with the state-of-the-art method Fitted Q-Evaluation (FQE), and beats FQE when evaluating beyond the initial state distribution. Our ablations show that both linear Bellman complete and coverage components of our method are crucial.  more » « less
Award ID(s):
1846210
PAR ID:
10406745
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 39th International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Li, Y; Mandt, S; Agrawal, S; Khan, E (Ed.)
    We study the problem of representational transfer in offline Reinforcement Learning (RL), where a learner has access to episodic data from a number of source tasks collected a priori, and aims to learn a shared representation to be used in finding a good policy for a target task. Unlike in online RL where the agent interacts with the environment while learning a policy, in the offline setting there cannot be such interactions in either the source tasks or the target task; thus multi-task offline RL can suffer from incomplete coverage. We propose an algorithm to compute pointwise uncertainty measures for the learnt representation in low-rank MDPs, and establish a data-dependent upper bound for the suboptimality of the learnt policy for the target task. Our algorithm leverages the collective exploration done by source tasks to mitigate poor coverage at some points by a few tasks, thus overcoming the limitation of needing uniformly good coverage for a meaningful transfer by existing offline algorithms. We complement our theoretical results with empirical evaluation on a rich-observation MDP which requires many samples for complete coverage. Our findings illustrate the benefits of penalizing and quantifying the uncertainty in the learnt representation. 
    more » « less
  2. In the realm of reinforcement learning (RL), off-policy evaluation (OPE) holds a pivotal position, especially in high-stake human-centric scenarios such as e-learning and healthcare. Applying OPE to these domains is often challenging with scarce and underrepresentative offline training trajectories. Data augmentation has been a successful technique to enrich training data. However, directly employing existing data augmentation methods to OPE may not be feasible, due to the Markovian nature within the offline trajectories and the desire for generalizability across diverse target policies. In this work, we propose an offline trajectory augmentation approach, named \textbf{OAT}, to specifically facilitate OPE in human-involved scenarios. We propose sub-trajectory mining to extract potentially valuable sub-trajectories from offline data, and diversify the behaviors within those sub-trajectories by varying coverage of the state-action space. Our work was empirically evaluated in a wide array of environments, encompassing both simulated scenarios and real-world domains like robotic control, healthcare, and e-learning, where the training trajectories include varying levels of coverage of the state-action space. By enhancing the performance of a variety of OPE methods, our work offers a promising path forward for tackling OPE challenges in situations where human-centric data may be limited or underrepresentative. 
    more » « less
  3. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    Off-policy evaluation (OPE) is one of the most fundamental problems in reinforcement learning (RL) to estimate the expected long-term payoff of a given target policy with \emph{only} experiences from another behavior policy that is potentially unknown. The distribution correction estimation (DICE) family of estimators have advanced the state of the art in OPE by breaking the \emph{curse of horizon}. However, the major bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-point optimization involved, especially with neural network implementations. In this paper, we tackle this challenge by establishing a \emph{linear representation} of value function and stationary distribution correction ratio, \emph{i.e.}, primal and dual variables in the DICE framework, using the spectral decomposition of the transition operator. Such primal-dual representation not only bypasses the non-convex non-concave optimization in vanilla DICE, therefore enabling an computational efficient algorithm, but also paves the way for more efficient utilization of historical data. We highlight that our algorithm, \textbf{SpectralDICE}, is the first to leverage the linear representation of primal-dual variables that is both computation and sample efficient, the performance of which is supported by a rigorous theoretical sample complexity guarantee and a thorough empirical evaluation on various benchmarks. 
    more » « less
  4. Sample-efficiency guarantees for offline reinforcement learning (RL) often rely on strong assumptions on both the function classes (e.g., Bellman-completeness) and the data coverage (e.g., all-policy concentrability). Despite the recent efforts on relaxing these assumptions, existing works are only able to relax one of the two factors, leaving the strong assumption on the other factor intact. As an important open problem, can we achieve sample-efficient offline RL with weak assumptions on both factors? In this paper we answer the question in the positive. We analyze a simple algorithm based on the primal-dual formulation of MDPs, where the dual variables (discounted occupancy) are modeled using a density-ratio function against offline data. With proper regularization, the algorithm enjoys polynomial sample complexity, under only realizability and single-policy concentrability. We also provide alternative analyses based on different assumptions to shed light on the nature of primal-dual algorithms for offline RL. 
    more » « less
  5. How to select between policies and value functions produced by different training algorithms in offline reinforcement learning (RL)—which is crucial for hyperparameter tuning—is an important open question. Existing approaches based on off-policy evaluation (OPE) often require additional function approximation and hence hyperparameters, creating a chicken-and-egg situation. In this paper, we design hyperparameter-free algorithms for policy selection based on BVFT [XJ21], a recent theoretical advance in value-function selection, and demonstrate their effectiveness in discrete-action benchmarks such as Atari. To address performance degradation due to poor critics in continuous-action domains, we further combine BVFT with OPE to get the best of both worlds, and obtain a hyperparameter-tuning method for Q-function based OPE with theoretical guarantees as a side product. 
    more » « less