skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 29, 2025

Title: Three-dimensional isotropic imaging of live suspension cells enabled by droplet microvortices
Fast, nondestructive three-dimensional (3D) imaging of live suspension cells remains challenging without substrate treatment or fixation, precluding scalable single-cell morphometry with minimal alterations. While optical sectioning techniques achieve 3D live cell imaging, lateral versus depth resolution differences further complicate analysis. We present a scalable microfluidic method capable of 3D fluorescent isotropic imaging of live, nonadherent cells suspended inside picoliter droplets with high-speed single-cell volumetric readout (800 to 1,200 slices in 5 to 8 s) and near-diffraction limit resolution (~216 nm). The platform features a droplet trap array that leverages flow-induced droplet interfacial shear to generate intradroplet microvortices, which rotate single cells on their axis to enable optical projection tomography (OPT)-based imaging. This allows gentle (~1 mPa shear stress) observation of cells encapsulated inside nontoxic isotonic buffer droplets, facilitating scalable OPT acquisition by simultaneous spinning of hundreds of cells. We demonstrate 3D imaging of live myeloid and lymphoid cells in suspension, including K562 cells, as well as naive and activated T cells—small cells prone to movement in their suspended phenotype. Our fully suspended, orientation-independent cell morphometry, driven by isotropic imaging and spherical harmonic analysis, enabled the study of primary T cells across various immunological activation states. This approach unveiled six distinct nuclear content distributions, contrasting with conventional 2D images that typically portray spheroid and bean-like nuclear shapes associated with lymphocytes. Our arrayed-droplet OPT technology is capable of isotropic, single live-cell 3D imaging, with the potential to perform large-scale morphometry of immune cell effector function states while providing compatibility with microfluidic droplet operations.  more » « less
Award ID(s):
1841509 1841473
PAR ID:
10572521
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
na
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
44
ISSN:
0027-8424
Subject(s) / Keyword(s):
3D Live-cell imaging microfluidics droplet microvortices nucleus morphology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A multifunctional microfluidic platform combining on-demand aqueous-phase droplet generation, multi-droplet storage, and controlled merging of droplets selected from a storage library in a single integrated microfluidic device is described. A unique aspect of the technology is a microfluidic trap design comprising a droplet trap chamber and lateral bypass channels integrated with a microvalve that supports the capture and merger of multiple droplets over a wide range of individual droplet sizes. A storage unit comprising an array of microfluidic traps operates in a first-in first-out manner, allowing droplets stored within the library to be analyzed before sequentially delivering selected droplets to a downstream merging zone, while shunting other droplets to waste. Performance of the microfluidic trap is investigated for variations in bypass/chamber hydrodynamic resistance ratio, micro-chamber geometry, trapped droplet volume, and overall flow rate. The integrated microfluidic platform is then utilized to demonstrate the operational steps necessary for cell-based assays requiring the isolation of defined cell populations with single cell resolution, including encapsulation of individual cells within an aqueous-phase droplet carrier, screening or incubation of the immobilized cell-encapsulated droplets, and generation of controlled combinations of individual cells through the sequential droplet merging process. Beyond its utility for cell analysis, the presented platform represents a versatile approach to robust droplet generation, storage, and merging for use in a wide range of droplet-based microfluidics applications. 
    more » « less
  2. Selection of live cells from a population is critical in many biological studies and biotechnologies. We present here a novel droplet microfluidic approach that allows for label-free and passive selection of live cells using the glycolytic activity of individual cells. It was observed that with the use of a specific surfactant utilized to stabilize droplet formation, the interfacial tension of droplets was very sensitive to pH. After incubation, cellular lactate release results in droplets containing a live cell to attain a lower pH than other droplets. This enables the sorting of droplets containing live cells when confined droplets flow over a microfabricated trench oriented diagonally with respect to the direction of flow. The technique is demonstrated with human U87 glioblastoma cells for the selection of only droplets containing a live cell while excluding either empty droplets or droplets containing a dead cell. This label-free sorting method, dubbed sorting by interfacial tension (SIFT) presents a new strategy to sort diverse cell types based on metabolic activity. 
    more » « less
  3. Abstract The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single‐cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag‐Coalesce‐Attract‐Resegment Wash (CellMag‐CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of β‐Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to β‐Estradiol stimulation with a 1.8‐fold increase relative to the control. 
    more » « less
  4. We present a water-in-oil droplet microfluidic trap array capable of modulating the distance between co-encapsulated cell pairs through microvortex formation. We demonstrate that vortex shape and periodicity can be directly controlled by the continuous phase flow rate. Explicit equations for the recirculation time inside droplet microvortices were derived by approximating the velocity fields through analytic solutions for the flow inside and outside of a spherical droplet. Comparison of these expressions against Particle Tracking Velocimetry (PTV) measurements of K562 (leukemia) cells circulating inside 50 μm droplets showed excellent theoretical agreement. 
    more » « less
  5. Optical projection tomography (OPT) is a three-dimensional (3D) fluorescence imaging technique, in which projection images are acquired for varying orientations of a sample using a large depth of field. OPT is typically applied to a millimeter-sized specimen, because the rotation of a microscopic specimen is challenging and not compatible with live cell imaging. In this Letter, we demonstrate fluorescence optical tomography of a microscopic specimen by laterally translating the tube lens of a wide-field optical microscope, which allows for high-resolution OPT without rotating the sample. The cost is the reduction of the field of view to about halfway along the direction of the tube lens translation. Using bovine pulmonary artery endothelial cells and 0.1 µm beads, we compare the 3D imaging performance of the proposed method with that of the conventional objective-focus scan method. 
    more » « less