Abstract Stormwater ponds are common features in urbanized landscapes because they enhance flood reduction and nutrient retention. With shallow depths and high inputs of organic matter, these systems can be highly productive with rapid oxygen depletion when thermally stratified or ice‐covered. However, most of our understanding of the biogeochemistry of stormwater ponds comes from the open water period. We explored under‐ice oxygen dynamics in 20 stormwater ponds in Madison, WI (USA) that were ice covered from late December to early March to investigate the drivers of bottom water oxygen saturation and the impact on the accumulation of carbon dioxide (CO2) and methane (CH4). Winter anoxia was driven by ice transmissivity, winter nutrient concentrations, and precedent summer productivity. Oxygen depletion led to overall higher concentrations of greenhouse gases in pond surface waters. This research enhances our understanding of winter pond biogeochemistry and its links to summer productivity.
more »
« less
Greenhouse gas and water chemistry data from urban ponds in Madison, Wisconsin during the summer and under-ice period of 2021-2022
Stormwater ponds are common features in urbanized landscapes and can suffer from rapid oxygen depletion when thermally stratified or ice-covered. To investigate under-ice oxygen dynamics and drivers of bottom water oxygen saturation, we sampled 20 stormwater ponds in Madison, Wisconsin, USA during the summer of 2021 and winter 2022. The urban ponds ranged in age, shape, size, and depth. We repeatedly took YSI profiles of water temperature, oxygen, and specific conductance 7 times in the summer and 3 times in the winter. Water chemistry variables were collected in the surface waters, habitat surveys were conducted in the summer, and ice/snow thickness was recorded in the winter. We also measured the concentration of greenhouse gases in the surface waters as a consequence to oxygen depletion using the headspace equilibrium method.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10572634
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Comparing helicopter‐borne surface temperature maps in winter and optical orthomosaics in summer from the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one‐dimensional steady‐state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold‐based classification achieves a correct classification for 41% of the melt ponds.more » « less
-
Abstract Beavers (Castor canadensis) are rapidly colonizing the North American Arctic, transforming aquatic and riparian tundra ecosystems. Arctic tundra may respond differently than temperate regions to beaver engineering due to the presence of permafrost and the paucity of unfrozen water during winter. Here, we provide a detailed investigation of 11 beaver pond complexes across a climatic gradient in Arctic Alaska, addressing questions about the permafrost setting surrounding ponds, the influence of groundwater inputs on beaver colonization and resulting ponds, and the change in surface water and aquatic overwintering habitat. Using field measurements, in situ dataloggers, and remote sensing, we evaluate permafrost, water quality, pond ice phenology, and physical characteristics of impoundments, and place our findings in the context of pond age, local climate, permafrost setting, and the presence of perennial groundwater inputs. We show beavers are accelerating the effects of climate change by thawing permafrost adjacent to ponds and increasing liquid water during winter. Beavers often exploited perennial springs in discontinuous permafrost, and summertime water temperatures at spring‐fed (SF) beaver ponds were roughly 5°C lower than sites lacking springs (NS). Late winter liquid water was generally present at pond complexes, although liquid water below seasonal ice cover was shallow (5–82 cm at SF and 5–15 cm at NS ponds) and ice was thick (median: 85 cm). Water was less acidic at SF than NS sites and had higher specific conductance and more dissolved oxygen. We estimated 2.4 dams/km of stream at sites on the recently colonized (last ~10 years) Baldwin Peninsula and 7.4 dams/km on the Seward Peninsula, where beavers have been present longer (~20+ years) and groundwater‐surface water connectivity is more common. Our study highlights the importance of climatic and physiographic context, especially permafrost presence and groundwater inputs, in determining the characteristics of the Arctic beaver pond environment. As beavers continue their expansion into tundra regions, these characteristics will increasingly represent the future of aquatic and riparian Arctic ecosystems.more » « less
-
Abstract The Pacific inflow to the Arctic traditionally brings heat in summer, melting sea ice; dense waters in winter, refreshing the Arctic’s cold halocline; and nutrients year‐round, supporting Arctic ecosystems. Bering Strait moorings from 1990 to 2019 find increasing (0.010 ± 0.006 Sv/yr) northward flow, reducing Chukchi residence times by ∼1.5 months over this period (record maximum/minimum ∼7.5 and ∼4.5 months). Annual mean temperatures warm significantly (0.05 ± 0.02°C/yr), with faster change (∼0.1°C/yr) in warming (June/July) and cooling (October/November) months, which are now 2°C to 4°C above climatology. Warm (≥0°C) water duration increased from 5.5 months (the 1990s) to over 7 months (2017), mostly due to earlier warming (1.3 ± 0.7 days/yr). Dramatic winter‐only (January–March) freshening (0.03 psu/yr) makes winter waters fresher than summer waters. The resultant winter density change, too large to be compensated by Chukchi sea‐ice processes, shoals the Pacific Winter Water (PWW) equilibrium depth in the Arctic from 100–150 to 50–100 m, implying PWW no longer ventilates the Arctic’s cold halocline at 33.1 psu.more » « less
-
Abstract Aquatic ecosystems - lakes, ponds and streams - are hotspots of biodiversity in the cold and arid environment of Continental Antarctica. Environmental change is expected to increasingly alter Antarctic aquatic ecosystems and modify the physical characteristics and interactions within the habitats that they support. Here, we describe physical and biological features of the peripheral ‘moat’ of a closed-basin Antarctic lake. These moats mediate connectivity amongst streams, lake and soils. We highlight the cyclical moat transition from a frozen winter state to an active open-water summer system, through refreeze as winter returns. Summer melting begins at the lakebed, initially creating an ice-constrained lens of liquid water in November, which swiftly progresses upwards, creating open water in December. Conversely, freezing progresses slowly from the water surface downwards, with water at 1 m bottom depth remaining liquid until May. Moats support productive, diverse benthic communities that are taxonomically distinct from those under the adjacent permanent lake ice. We show how ion ratios suggest that summer exchange occurs amongst moats, streams, soils and sub-ice lake water, perhaps facilitated by within-moat density-driven convection. Moats occupy a small but dynamic area of lake habitat, are disproportionately affected by recent lake-level rises and may thus be particularly vulnerable to hydrological change.more » « less
An official website of the United States government
