The Guaymas Basin, in the central Gulf of California, is a marginal ocean basin characterized by active seafloor spreading and high sedimentation rates. It has been the focus of two drilling expeditions, Deep Sea Drilling Project (DSDP) Leg 64 and International Ocean Discovery Program (IODP) Expedition 385. Expedition 385 recovered over 4 km of middle Pleistocene to Holocene core at eight drill sites, providing only simplistic stratigraphic columns that were broadly divided into as many as four lithostratigraphic subunits largely based on diagenetic modifications of sediments (authigenic carbonate and silica). For this study, shipboard sedimentologic descriptions of these subunits were used to create new, more detailed lithostratigraphic columns at an approximately decimeter (core) scale for correlation purposes and sedimentary interpretation. This was accomplished through examination of slabbed core images, visual core description sheets, and a shipboard lithologic database. The new columns provide more detailed downhole variability in lithology. The lithologic classification scheme for Expedition 385 was then integrated with that of sites previously drilled during Leg 64 to translate published visual core descriptions so as to uniformly generate comparable stratigraphic columns for both sets of drill holes. These newly compiled and tabulated data provide a more detailed picture of stratigraphic variation of lithology on a core by core basis across the basin.
more »
« less
This content will become publicly available on January 10, 2026
Data report: petrography of volcaniclastic intervals in IODP Expedition 385 cores from Guaymas Basin, Gulf of California
The Guaymas Basin is a 6 Ma transtensional ocean basin located in the central Gulf of California characterized by active seafloor spreading, off-axis magmatism, and high biogenic and terrigenous sedimentation rates. Sparse volcaniclastic intervals were identified by shipboard scientists in Quaternary sedimentary cores recovered during International Ocean Discovery Program (IODP) Expedition 385. Shipboard visual core descriptions and smear slide analyses were used to identify 57 volcaniclastic intervals, which were then sampled and analyzed macroscopically and microscopically. Petrographic modal analyses were conducted on a subset of 36 thin sections with a total of 300 points counted per thin section. A grain classification scheme was developed from published literature to characterize the compositional and textural variability of volcanic grains in cores from across the basin. Point count percentages reveal that vitric volcanic lithic fragments, particularly brown glass shards, are the dominant clast type observed at all drill sites, whereas crystal-bearing volcanic lithic fragments and mineral grains comprise a minor percentage of the total points counted. The vitric fragments also exhibit a wide range of shard vesicularity and morphologies. This data report presents a petrographic analysis of volcaniclastic deposits recovered during Expedition 385 to elucidate on the modal and spatial distribution of volcanic material in the Guaymas Basin.
more »
« less
- PAR ID:
- 10572655
- Publisher / Repository:
- International Ocean Discovery Program
- Date Published:
- Journal Name:
- Proceedings of the International Ocean Discovery Program Expedition reports
- Volume:
- 385
- Issue:
- 206
- ISSN:
- 2377-3189
- ISBN:
- 978-1-954252-77-6
- Subject(s) / Keyword(s):
- International Ocean Discovery Program IODP JOIDES Resolution Expedition 385 Guaymas Basin Tectonics and Biosphere Site U1545 Site U1546 Site U1547 Site U1548 Site U1549 Site U1550 volcaniclastic petrography volcanism
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The provenance of sandstones deposited in the late Paleozoic Tepuel-Genoa Basin is analyzed in this paper. Five sections were sampled in Esquel, Sierra de Tepuel, Sierra de Tecka, El Molle, and Río Genoa areas for petrographic and geochemical studies. The sandstones in the Tepuel-Genoa Basin are dominated by feldspathic litharenites and litharenites, showing lithic fragments of volcanic and sedimentary rocks in the Valle Chico Formation and medium-to high-grade metamorphic rock clasts in the rest of the units. Detrital modes of seventy-five sandstones samples from the Valle Chico, Pampa de Tepuel, Moj´on de Hierro, and Río Genoa formations were counted and analyzed. Seven modal components have discriminant value for identifying provenance areas (Qm, Qi, Lv, Lmm-h, Lm-Lp, Lm, Qpm). These modal components allow identification of three petrofacies: 1. Quartzose-lithic (Qm69Lv2Lm29), 2. Quartzose (Qm89Lv4Lm7) and 3. Volcanic-sedimentary (Qm60Lv38Lm1). The quartzose-lithic petrofacies is mainly composed of monocrystalline quartz, medium- and high-grade metamorphic clasts and polycrystalline quartz with cataclastic texture, this assemblage is interpreted as being derived from the crystalline rocks that form the Deseado Massif. The quartzose petrofacies is composed of monocrystalline quartz with scarce contributions of metamorphic clasts and traces of volcanic fragments; the provenance area is ascribed to sedimentary terrains, which most likely covered part of the Deseado Massif. The volcanic-sedimentary petrofacies is comprised of volcanic (acidic and intermediate rocks) and sedimentary (sandstone and mudstone) clasts, with discrete amounts of quartz grains with idiomorph shapes and embayments. This assemblage may correspond to material supply from the Devonian-Early Carboniferous accretionary complex developed in Chile or the unroofing of the western volcanic arc located in the central part of Patagonia. The validity of the three defined petrofacies was evaluated using Principal Component Analysis and triangular compositional diagrams; both methods show good separation and lack of overlap between the three petrofacies. Major (Si, Al, Fe, Na, K) and trace-REE elements (Zr, Th, Sc, Hf) were used to improve the petrographic information. The relation SiO2 against K2O/Na2O indicates that the Pampa de Tepuel and the Moj´on de Hierro formations correspond to a passive margin, while the Valle Chico and Río Genoa formations represent different types of active continental margins. The Th/Sc and Zr/Sc ratios and the Th-Hf-Co distributions indicate that the sandstones of the Tepuel Group were formed from rocks compatibles with the average composition of the upper continental crust.more » « less
-
null (Ed.)International Ocean Discovery Program (IODP) Expedition 385 drilled organic-rich sediments with sill intrusions on the flanking regions and in the northern axial graben in Guaymas Basin, a young marginal rift basin in the Gulf of California. Guaymas Basin is characterized by a widely distributed, intense heat flow and widespread off-axis magmatism expressed by a dense network of sill intrusions across the flanking regions, which is in contrast to classical mid-ocean ridge spreading centers. The numerous off-axis sills provide multiple transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over the flanking regions of Guaymas Basin, covering a distance of ~81 km from the from the northwest to the southeast. Adjacent Sites U1545 and U1546 recovered the oldest and thickest sediment successions (to ~540 meters below seafloor [mbsf]; equivalent to the core depth below seafloor, Method A [CSF-A] scale), one with a thin sill (a few meters in thickness) near the drilled bottom (Site U1545), and one with a massive, deeply buried sill (~356–430 mbsf) that chemically and physically affects the surrounding sediments (Site U1546). Sites U1547 and U1548, located in the central part of the northern Guaymas Basin segment, were drilled to investigate a 600 m wide circular mound (bathymetric high) and its periphery. The dome-like structure is outlined by a ring of active vent sites called Ringvent. It is underlain by a remarkably thick sill at shallow depth (Site U1547). Hydrothermal gradients steepen at the Ringvent periphery (Holes U1548A–U1548C), which in turn shifts the zones of authigenic carbonate precipitation and of highest microbial cell abundance toward shallower depths. The Ringvent sill was drilled several times and yielded remarkably diverse igneous rock textures, sediment–sill interfaces, and hydrothermal alteration, reflected by various secondary minerals in veins and vesicles. Thus, the Ringvent sill became the target of an integrated sampling and interdisciplinary research effort that included geological, geochemical, and microbiological specialties. The thermal, lithologic, geochemical, and microbiological contrasts between the two deep northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the scientific centerpiece of the expedition. These observations are supplemented by results from sites that represent attenuated cold seepage conditions in the central basin (Site U1549), complex and disturbed sediments overlying sills in the northern axial trough (Site U1550), terrigenous sedimentation events on the southeastern flanking regions (Site U1551), and hydrate occurrence in shallow sediments proximal to the Sonora margin (Site U1552). The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls of authigenic mineral formation in sediments, and (4) yield new insights into many geochemical and geophysical aspects of both architecture and sill–sediment interaction in a nascent spreading center. The generally high quality and high degree of completeness of the shipboard datasets present opportunities for interdisciplinary and multidisciplinary collaborations during shore-based studies. In comparison to Deep Sea Drilling Project Leg 64 to Guaymas Basin in 1979, sophisticated drilling strategies (for example, the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations have greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial genomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 will in many respects build on the foundations laid by Leg 64 for understanding Guaymas Basin, regardless of whether adjustments are required in the near future.more » « less
-
null (Ed.)International Ocean Discovery Program (IODP) Expedition 371 drilled six sites in the Tasman Sea of the southwest Pacific between 27 July and 26 September 2017. The primary goal was to understand Tonga-Kermadec subduction initiation through recovery of Paleogene sediment records. Secondary goals involved understanding regional oceanography and climate since the Paleogene. Six sites were drilled, recovering 2506 m of cored sediment and volcanic rock in 36.4 days of on-site drilling during a total expedition length of 58 days. Wireline logs were collected at two sites. Shipboard observations made using cores and logs represent a substantial gain in fundamental knowledge about northern Zealandia, because only Deep Sea Drilling Project Sites 206, 207, and 208 had penetrated beneath upper Eocene strata within the region. The cored intervals at five sites (U1506–U1510) sampled nannofossil and foraminiferal ooze or chalk that contained volcanic or volcaniclastic intervals with variable clay content. Paleocene and Cretaceous sections range from more clay rich to predominantly claystone. At the final site (U1511), a sequence of abyssal clay and diatomite was recovered with only minor amounts of carbonate. The ages of strata at the base of each site were middle Eocene to Late Cretaceous, and our new results provide the first firm basis for defining formal lithostratigraphic units that can be mapped across a substantial part of northern Zealandia and related to onshore regions of New Caledonia and New Zealand. The material and data recovered during Expedition 371 enable primary scientific goals to be accomplished. All six sites provided new stratigraphic and paleogeographic information that can be put into context through regional seismic-stratigraphic interpretation and hence provide strong constraints on geodynamic models of subduction zone initiation. Our new observations can be directly related to the timing of plate deformation, the magnitude and timing of vertical motions, and the timing and type of volcanism. Secondary paleoclimate objectives were not all completed as planned, but significant new records of southwest Pacific climate were obtained.more » « less
-
null (Ed.)International Ocean Discovery Program Expedition 385 drilled organic-rich sediments and intruded sills in the off-axis region and axial graben of the northern spreading segment of Guaymas Basin, a young marginal seafloor spreading system in the Gulf of California. Guaymas Basin is characterized by high heat flow and magmatism in the form of sill intrusions into sediments, which extends tens of kilometers off axis, in contrast with the localized volcanism found at most mid-ocean ridge spreading centers. Sill intrusions provide transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over a broad region of Guaymas Basin. Adjacent Sites U1545 and U1546, located ~52 km northwest of the northern Guaymas Basin axial graben, recovered sediment successions to ~540 meters below seafloor (mbsf) (equivalent to the core depth below seafloor, Method A [CSF-A] scale), including a thin sill (a few meters thick) drilled near the bottom of Site U1545 and a massive sill (~355–430 mbsf) at Site U1546 that chemically and physically affects the surrounding sediments. Sites U1547 and U1548, located ~27 km northwest of the axial graben, were drilled to investigate an active sill-driven hydrothermal system evident at the seafloor as an 800 m wide, circular bathymetric high called Ringvent because of its outline of a ring of active vent sites. Ringvent is underlain by a thick sill at shallow depth (Site U1547). Geothermal gradients steepen toward the Ringvent periphery (Holes U1548A–U1548C), and the zones of authigenic carbonate precipitation and of highest microbial cell abundance correspondingly shallow toward the periphery. The underlying sill was drilled several times and yielded diverse igneous rock textures, sediment/sill interfaces, and alteration minerals in veins and vesicles. The Ringvent sill became the target of an integrated, interdisciplinary sampling and research effort that included geological, geochemical, and microbiological components. The thermal, lithologic, geochemical, and microbiological contrasts between the northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the core scientific observations informing the direct influence of sill-sediment interaction. These observations are supplemented by results from sites that exhibit persistent influence of thermally equilibrated sill intrusions, including supporting long-lived methane cold seeps, as observed at off-axis Sites U1549 and U1552, and the persistent geochemical record of hydrocarbon formation near the sill/sediment contact, as observed at the northern axial trough Site U1550, which confirms observations from Deep Sea Drilling Project (DSDP) Leg 64. Drilling at Site U1551 ~29 km southeast of the axial graben was not successful due to unstable shallow sands, but it confirmed the dominant influence of gravity-flow sedimentation processes southeast of the axial graben. The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls on authigenic mineral formation in sediments, and (4) yield new insights into the long term influence of sill-sediment interaction on sediments deposited at the earliest stages of seafloor spreading, that is, when spreading centers are proximal to a continental margin. The generally high quality and high degree of completeness of the shipboard data sets present opportunities for inter- and multidisciplinary collaborations during shore-based studies. In comparison to DSDP Leg 64 to Guaymas Basin in 1979, continuous availability of sophisticated drilling strategies (e.g., the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial metagenomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 in many respects builds on the foundations of understanding laid by Leg 64 drilling in Guaymas Basin.more » « less
An official website of the United States government
