skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing differential efficacy and phenotypic response to proteasome and survivin inhibitors in colorectal cancers using a high throughput organoid assay.
153 Background: Conventional monolayer cell cultures and xenograft models, while useful and economical in early drug discovery, cannot predict clinical efficacy. Further, preclinical screening assays that rely on differential metabolic activity between separate control and treated wells are incapable of capturing phenotypic response and could overstate efficacy for cells with high rates of proliferation. Consequently, over 95% of anticancer agents that show efficacy in preclinical studies, fail in clinical trials. Recently, patient-derived organoid (PDO) models have been utilized in developing platforms to predict clinical efficacy of preclinical formulations. If successful, such predictive ex vivo technologies could revolutionize cancer treatment by reducing cost and time-to-market for new, more effective therapeutics. Objective: Characterize a novel bioprinted organoid tumor (BOT) high-throughput screening ex vivo platform for drug response prediction (DRP) with known proteosome and survivn inhibitors in colorectal cancer. Methods: Bioink for 3D printing BOTs was prepared with HT-29 cells, an established NCI-60 human colorectal adenocarcinoma cell line with known sensitivity to proteosome and survivin inhibitors. Bioink was deposited layer-by-layer on multiple substrates, in various geometrical configurations, and cured in stages to allow cells and matrix to self-assemble with limited degrees of freedom. BOTs were screened 24h and 48h after printing with proteosome inhibitor Bortezomib and survivin inhibitor YM-155. BOTs were evaluated 48h and 72h after treatment using immunofluorescence live/dead assay. Morphological phenotypic changes resulting from treatment were also recorded. Results: Proteasome and survivin inhibitors have been reported to inhibit proliferation and induce cell death in colorectal cancer cells. A dose dependent response was observed for both agents in our novel BOT HTS thereby validating the platform. In addition, characteristic self-assembly of HT-29 cells was observed to be disrupted at effective doses and at certain concentrations below the effective dose. Traditional ATP assays are incapable of recording such phenotypic modulation. Further, a higher proliferation profile was observed in untreated BOTs suggesting that use of independent control wells in traditional assays could overstate efficacy of treatment. Conclusions: Functional high-throughput ex vivo DRP technologies have the potential to transform cancer treatment – from bench to bedside – along the drug discovery to market roadmap for much needed novel anticancer agents.  more » « less
Award ID(s):
2321805
PAR ID:
10572783
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
JCO
Date Published:
Journal Name:
Journal of Clinical Oncology
Volume:
42
Issue:
3_suppl
ISSN:
0732-183X
Page Range / eLocation ID:
153 to 153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 91 Background: Colorectal cancer (CRC) is the third leading type of cancer worldwide, with ~150,000 new cases in the US annually and a grim 14% 5-year survival for patients diagnosed at a late stage. A lack of treatment options leads to persistently poor prognosis for patients with advanced stage disease. KRAS mutations are well known drivers of CRC and other GI cancers. Multiple KRAS mutations occur in CRC, including G12D (34%), G12V (21%), G13D (20%), G12C (8%), and others (18%). Existing KRAS-targeted therapies have limited use in CRC, underscoring the need for pan-RAS inhibitors in treating CRC and other RAS driven cancers. Objective: Assess activity of ADT-007, our pan-RAS inhibitor, on wild-type (WT) and KRAS-mutant 3D bioprinted organoid tumor (BOT) tissue using our high-throughput ex vivo platform. Methods: Using previously established bioprinting protocols, WT and mutant BOTs were printed with HT29 and HCT116 cells, respectively. HT29 is an established human WT CRC cell line with known sensitivity to proteosome and survivin inhibitors. HCT116 is a KRASG13Dmutant human CRC cell line. 3 sets of BOTs were generated and acclimated for 24h. One set was treated for 72h with proteosome inhibitor Bortezomib, another with survivin inhibitor YM155, and the third with our novel pan-RAS inhibitor ADT-007. Dose response curves were generated from both conventional ATP luminescence readouts and high-content imaging. Results: BOT tissue microarchitecture was validated and >200 µm diffusion in BOTs was confirmed using high-content imaging. Differential response was quantified using Cell TiterGlo endpoint assay as well as advanced image processing of high-content live/dead nuclear stained images captured at multiple z-plains. ADT-007 IC50was found to be substantially lower for mutant HCT116 compared to that for WT HT29 cell line BOTs, which was consistent with separately conducted in vitro and in vivo studies. Conclusions: A pan-RAS inhibitor, such as ADT-007 with high selectivity for cancer cells with activated RAS that is not limited to a specific KRAS mutant allele or RAS isozyme, could have broader use for CRC and other RAS-driven cancers. Further, due to their potential to replicate biophysical characteristics of a tumor and its microenvironment, BOT based precision and personalized medicine platforms can provide more accurate drug efficacy readout compared to in vitro cancer models. 
    more » « less
  2. Three-dimensional (3D) disease models have garnered widespread interest for use in later stages of the drug discovery process, such as preclinical efficacy and toxicology studies, due to their pathophysiologically relevant properties. However, there is a need and opportunity for 3D cancer models to be used earlier in the drug screening process. To meet this need, the 3D models must strike a balance between throughput, which includes scalability and uniformity, and physiological relevance, such as the ability to modulate key attribute of the tumor microenvironment. Here we report the creation of 3D colorectal cancer (CRC) tissue models, referred to as VivoSpheres, and demonstrated their relevance to cancer drug screening. The VivoSphere production platform couples tissue engineering toolkits with microfluidics, enabling the scalable production of engineered cancer microspheres. The model supports the long-term maintenance of the cancer cell phenotype. In a preliminary study, we were able to generate more physiologically relevant drug responses. We formed CRC VivoSpheres by encapsulating HT-29 CRC cells within poly(ethylene glycol)-fibrinogen hydrogel microspheres using our previously developed microfluidic platform. CRC VivoSpheres were rapidly produced with high cell densities (20 × 106 cells/ml) and high uniformity on day 0 with a coefficient of variation (COV) < 7%. This high uniformity was maintained for 15 days (COV ≤ 10%), which is critical for long-term dose studies. The cells maintained high viability and showed high proliferative capability with a significant increase in colony size and expression of Ki67 up to day 29. The encapsulated cells maintained the CRC phenotype over time with the expression of CD44 (cancer stem cell marker) and CK20 (CRC marker). After establishing shipping conditions that maintained cell viability for remote use, the HT-29 VivoSpheres were shipped to the oncology team at Southern Research for drug testing. The CRC VivoSpheres were treated with DMSO, GANT61, and SRI-38832, the latter two of which are GLI1 inhibitors. Phase contrast images and western blot were used to assess the response of CRC VivoSpheres to the treatments. Oncogenic GLI1 transcription activity and NBS1 overexpression have been found to contribute to chemotherapeutic resistance, negating the anti-tumor effects of 5-fluorouracil. While 2D cultured HT-29s responded to treatment with GANT61, HT-29 VivoSpheres continued to express NBS1 following GANT1 treatment, but downregulated NBS1 in response to the GLI1 inhibitor SRI-38832, which is the same response Southern Research has seen in in vivo tumor models. In conclusion, we have developed tissue-engineered 3D CRC models that hold promise for use in drug screening. These models have demonstrated an initial capability to reproduce the CRC phenotype and mimic in vivo drug response. 
    more » « less
  3. Abstract Colorectal cancer, a significant cause of cancer-related mortality, often exhibits drug resistance, highlighting the need for improved tumor models to advance personalized drug testing and precision therapy. We generated organoids from primary colorectal cancer cells cultured through the conditional reprogramming technique, establishing a framework to perform short-term drug testing studies on patient-derived cells. To model interactions with stromal cells in the tumor microenvironment, we combined cancer cell organoids with carcinoma-associated fibroblasts, a cell type implicated in disease progression and drug resistance. Our organotypic models revealed that carcinoma-associated fibroblasts promote cancer cell proliferation and stemness primarily through hepatocyte growth factor–MET paracrine signaling and activation of cyclin-dependent kinases. Disrupting these tumor–stromal interactions reduced organoid size while limiting oncogenic signals and cancer stemness. Leveraging this tumor model, we identified effective drug combinations targeting colorectal cancer cells and their tumorigenic activities. Our study highlights a path to incorporate patient-derived cells and tumor–stromal interactions into a drug testing workflow that could identify effective therapies for individual patients. 
    more » « less
  4. Mohan, Chakrabhavi Dhananjaya (Ed.)
    Background Several studies have highlighted both the extreme anticancer effects of Cryptotanshinone (CT), a Stat3 crippling component from Salvia miltiorrhiza , as well as other STAT3 inhibitors to fight cancer. Methods Data presented in this experiment incorporates 2 years of in vitro studies applying a comprehensive live-cell drug-screening analysis of human and canine cancer cells exposed to CT at 20 μM concentration, as well as to other drug combinations. As previously observed in other studies, dogs are natural cancer models, given to their similarity in cancer genetics, epidemiology and disease progression compared to humans. Results Results obtained from several types of human and canine cancer cells exposed to CT and varied drug combinations, verified CT efficacy at combating cancer by achieving an extremely high percentage of apoptosis within 24 hours of drug exposure. Conclusions CT anticancer efficacy in various human and canine cancer cell lines denotes its ability to interact across different biological processes and cancer regulatory cell networks, driving inhibition of cancer cell survival. 
    more » « less
  5. Abstract The transcriptional plasticity of cancer cells promotes intercellular heterogeneity in response to anticancer drugs and facilitates the generation of subpopulation surviving cells. Characterizing single-cell transcriptional heterogeneity after drug treatments can provide mechanistic insights into drug efficacy. Here, we used single-cell RNA-seq to examine transcriptomic profiles of cancer cells treated with paclitaxel, celecoxib and the combination of the two drugs. By normalizing the expression of endogenous genes to spike-in molecules, we found that cellular mRNA abundance shows dynamic regulation after drug treatment. Using a random forest model, we identified gene signatures classifying single cells into three states: transcriptional repression, amplification and control-like. Treatment with paclitaxel or celecoxib alone generally repressed gene transcription across single cells. Interestingly, the drug combination resulted in transcriptional amplification and hyperactivation of mitochondrial oxidative phosphorylation pathway linking to enhanced cell killing efficiency. Finally, we identified a regulatory module enriched with metabolism and inflammation-related genes activated in a subpopulation of paclitaxel-treated cells, the expression of which predicted paclitaxel efficacy across cancer cell lines and in vivo patient samples. Our study highlights the dynamic global transcriptional activity driving single-cell heterogeneity during drug response and emphasizes the importance of adding spike-in molecules to study gene expression regulation using single-cell RNA-seq. 
    more » « less