skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing Closed-Form Equations of Maximum Drag and Moment on Rigid Vegetation Stems in Fully Nonlinear Waves
Coastal wetlands act as natural buffers against wave energy and storm surges. In the course of energy dissipation, vegetation stems are exposed to wave action, which may lead to stem breakage. An integral component of wave attenuation modeling involves quantifying the extent of damaged vegetation, which relies on determining the maximum drag force (FDmax) and maximum moment of drag (MDmax) experienced by vegetation stems. Existing closed-form theoretical equations for MDmax and FDmax are only valid for linear and weakly nonlinear deep water waves. To address this limitation, this study first establishes an extensive synthetic dataset encompassing 256,450 wave and vegetation scenarios. Their corresponding wave crests, wave troughs, MDmax, and FDmax, which compose the dataset, are numerically computed through an efficient algorithm capable of fast computing fully nonlinear surface gravity waves in arbitrary depth. Seven dominant wave and vegetation related dimensionless parameters that impact MDmax and FDmax are discerned and incorporated as input feature parameters into an innovative sparse regression algorithm to reveal the underlying nonlinear relationships between MDmax, FDmax and the input features. Sparse regression is a subfield of machine learning that primarily focuses on identifying a subset of relevant feature functions from a feature function library. Leveraging this synthetic dataset and the power of sparse regression, concise yet accurate closed-form equations for MDmax and FDmax are developed. The discovered equations exhibit good accuracy compared with the ground truth in the synthetic dataset, with a maximum relative error below 6.6% and a mean relative error below 1.4%. Practical applications of these equations involve assessment of the extent of damaged vegetation under wave impact and estimation of MDmax and FDmax on cylindrical structures.  more » « less
Award ID(s):
2139882
PAR ID:
10572794
Author(s) / Creator(s):
;
Publisher / Repository:
ASCE
Date Published:
Journal Name:
Journal of Waterway, Port, Coastal, and Ocean Engineering
Volume:
150
Issue:
3
ISSN:
0733-950X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a methodology based on the implementation of a fully connected neural network algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova (CCSN). For this study, we selected a fully connected deep neural network (DNN) regression model because it can learn both linear and nonlinear relationships between the input and output data, it is more appropriate for handling large-dimensional input data, and it offers high performance at a low computational cost. To train the Machine Learning (ML) algorithm, we construct a training dataset using synthetic waveforms, and several CCSN waveforms are used to test the algorithm. We performed a first-order estimation of the high-frequency gravitational wave emission on real interferometric LIGO data from the second half of the third observing run (O3b) with a two detector network (L1 and H1). The relative error associated with the estimate of the slope of the resonant frequency versus time for the GW from CCSN signals is within 13% for the tested candidates included in this study up to different Galactic distances (1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and 10 kpc). This method is, to date, the best estimate of the temporal evolution of the high-frequency emission in real interferometric data. Our methodology of estimation can be used in future studies focused on physical properties of the progenitor. The distances where comparable performances could be achieved for Einstein Telescope and Cosmic Explorer roughly rescale with the noise floor improvements. 
    more » « less
  2. We present a methodology based on the implementation of a fully connected neural network algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a core collapse supernova (CCSN). For this study, we selected a fully connected deep neural network (DNN) regression model because it can learn both linear and nonlinear relationships between the input and output data, it is more appropriate for handling large-dimensional input data, and it offers high performance at a low computational cost. To train the Machine Learning (ML) algorithm, we construct a training dataset using synthetic waveforms, and several CCSN waveforms are used to test the algorithm. We performed a first-order estimation of the high-frequency gravitational wave emission on real interferometric LIGO data from the second half of the third observing run (O3b) with a two detector network (L1 and H1). The relative error associated with the estimate of the slope of the resonant frequency versus time for the GW from CCSN signals is within 13% for the tested candidates included in this study up to different Galactic distances (1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and 10 kpc). This method is, to date, the best estimate of the temporal evolution of the high-frequency emission in real interferometric data. Our methodology of estimation can be used in future studies focused on physical properties of the progenitor. The distances where comparable performances could be achieved for Einstein Telescope and Cosmic Explorer roughly rescale with the noise floor improvements. 
    more » « less
  3. Bin Dong, Qianxiao Li (Ed.)
    This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The algorithm is online in a sense that if performs the identification task by processing solution snapshots that arrive sequentially. The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem. In particular, we do not regularize the ℓ0-pseudo-norm, instead finding that directly applying its proximal operator (which corresponds to a hard thresholding) leads to efficient online system identification from noisy data. We demonstrate the success of the method on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with time-varying wavespeed, and the linear wave equation, in one, two, and three spatial dimensions, respectively. In particular, our examples show that the method is capable of identifying and tracking systems with coefficients that vary abruptly in time, and offers a streaming alternative to problems in higher dimensions. 
    more » « less
  4. This paper presents an online algorithm for identification of partial differential equations (PDEs) based on the weak-form sparse identification of nonlinear dynamics algorithm (WSINDy). The algorithm is online in a sense that if performs the identification task by processing solution snapshots that arrive sequentially. The core of the method combines a weak-form discretization of candidate PDEs with an online proximal gradient descent approach to the sparse regression problem. In particular, we do not regularize the ℓ0 -pseudo-norm, instead finding that directly applying its proximal operator (which corresponds to a hard thresholding) leads to efficient online system identification from noisy data. We demonstrate the success of the method on the Kuramoto-Sivashinsky equation, the nonlinear wave equation with time-varying wavespeed, and the linear wave equation, in one, two, and three spatial dimensions, respectively. In particular, our examples show that the method is capable of identifying and tracking systems with coefficients that vary abruptly in time, and offers a streaming alternative to problems in higher dimensions. 
    more » « less
  5. Probit regression was first proposed by Bliss in 1934 to study mortality rates of insects. Since then, an extensive body of work has analyzed and used probit or related binary regression methods (such as logistic regression) in numerous applications and fields. This paper provides a fresh angle to such well-established binary regression methods. Concretely, we demonstrate that linearizing the probit model in combination with linear estimators performs on par with state-of-the-art nonlinear regression methods, such as posterior mean or maximum aposteriori estimation, for a broad range of real-world regression problems. We derive exact, closed-form, and nonasymptotic expressions for the mean-squared error of our linearized estimators, which clearly separates them from nonlinear regression methods that are typically difficult to analyze. We showcase the efficacy of our methods and results for a number of synthetic and real-world datasets, which demonstrates that linearized binary regression finds potential use in a variety of inference, estimation, signal processing, and machine learning applications that deal with binary-valued observations or measurements. 
    more » « less