Abstract The relationship between root, stem, and leaf hydraulic status and stomatal conductance during drought (field capacities: 100–25%) and drought recovery was studied in Helianthus annuus and five tree species (Populus×canadensis, Acer saccharum, A. saccharinum, Picea glauca, and Tsuga canadensis). Measurements of stomatal conductance (gs), organ water potential, and vessel embolism were performed and the following was observed: (i) cavitation only occurred in the petioles and not the roots or stems of tree species regardless of drought stress; (ii) in contrast, all H. annuus organs exhibited cavitation to an increasing degree from root to petiole; and (iii) all species initiated stomatal closure before cavitation events occurred or the expected turgor loss point was reached. After rewatering: (i) cavitated vessels in petioles of Acer species recovered whereas those of P. ×canadensis did not and leaves were shed; (ii) in H. annuus, cavitated xylem vessels were refilled in roots and petioles, but not in stems; and (iii) despite refilled embolisms in petioles of some species during drought recovery, gs never returned to pre-drought conditions. Conclusions are drawn with respect to the hydraulic segmentation hypothesis for above- and below-ground organs, and the timeline of embolism occurrence and repair is discussed.
more »
« less
This content will become publicly available on December 1, 2025
Within‐leaf variation in embolism resistance is not a rule for compound‐leaved angiosperms
Abstract PremiseHydraulic segmentation, caused by the difference in embolism resistance across plant organs, provides a sacrificial layer of cheaper plant organs, like leaves, to protect more costly organs, such as stems, during drought. Within‐leaf hydraulic segmentation has been observed in two compound‐leaved tree species, with leaflets being more vulnerable than the rachis or petiole. Many herbaceous species have compound leaves, and some species have leaflets that are associated with pulvini at the base of the lamina, which could provide an anatomical means of preventing embolism from spreading within a leaf because of the higher number of vessel endings in the pulvinus. MethodsWe used the optical vulnerability method to investigate whether differences in embolism resistance were observed across the leaf tissues of six herbaceous species and one deciduous tree species with compound leaves. Our species selection included both palmately and pinnately‐compound leaved species, one of each with a pulvinus at the base of the leaflets. ResultsWe found considerable variation in embolism resistance across the species measured, but no evidence of variation in embolism resistance within the leaf. In two species with pulvini, we observed major embolism events crossing the pulvinus, spreading from the rachis or petiole into the lamina, and embolizing both tissues at the same water potential. ConclusionsWe conclude that within‐leaf hydraulic segmentation, caused by variation in embolism resistance, is not a universal phenomenon to compound‐leaved species and that the presence of a pulvinus does not provide a barrier to embolism spread in compound leaves.
more »
« less
- Award ID(s):
- 2140119
- PAR ID:
- 10572810
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 111
- Issue:
- 12
- ISSN:
- 0002-9122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Observations show vulnerability segmentation between stems and leaves is highly variable within and between environments. While a number of species exhibit conventional vulnerability segmentation (stem leaf ), others exhibit no vulnerability segmentation and others reverse vulnerability segmentation (stem leaf ). We developed a hydraulic model to test hypotheses about vulnerability segmentation and how it interacts with other traits to impact plant conductance. We do this using a series of experiments across a broad parameter space and with a case study of two species with contrasting vulnerability segmentation patterns:Quercus douglasiiandPopulus trichocarpa. We found that while conventional vulnerability segmentation helps to preserve conductance in stem tissues, reverse vulnerability segmentation can better maintain conductance across the combined stem‐leaf hydraulic pathway, particularly when plants have more vulnerable s and have hydraulic segmentation with greater resistance in the leaves. These findings show that the impacts of vulnerability segmentation are dependent upon other plant traits, notably hydraulic segmentation, a finding that could assist in the interpretation of variable observations of vulnerability segmentation. Further study is needed to examine how vulnerability segmentation impacts transpiration rates and recovery from water stress.more » « less
-
Abstract Drought events may increase the likelihood that the plant water transport system becomes interrupted by embolism. Yet our knowledge about the temporal frequency of xylem embolism in the field is frequently lacking, as it requires detailed, long‐term measurements.We measured xylem embolism resistance and midday xylem water potentials during the consecutive summers of 2019 and 2020 to estimate maximum levels of embolism in leaf and stem xylem of ten temperate angiosperm tree species. We also studied vessel and pit membrane characteristics based on light and electron microscopy to corroborate potential differences in embolism resistance between leaves and stems.Apart fromA.pseudoplatanusandQ.petraea, eight species experienced minimum xylem water potentials that were close to or below those required to initiate embolism. Water potentials corresponding to ca. 12% loss of hydraulic conductivity (PLC) could occur in six species, while considerable levels of embolism around 50% PLC were limited toB.pendulaandC.avellana. There was a general agreement in embolism resistance between stems and leaves, with leaves being equally or more resistant than stems. Also, xylem embolism resistance was significantly correlated to intervessel pit membrane thickness (TPM) for stems, but not to vessel diameter and total intervessel pit membrane surface area of a vessel.Our data indicate that low amounts of embolism occur in most species during moderate summer drought, and that considerable levels of embolism are uncommon. Moreover, our experimental andTPMdata show that leaf xylem is generally no more vulnerable than stem xylem.more » « less
-
Summary Vulnerability to embolism varies between con‐generic species distributed along aridity gradients, yet little is known about intraspecific variation and its drivers. Even less is known about intraspecific variation in tissues other than stems, despite results suggesting that roots, stems and leaves can differ in vulnerability. We hypothesized that intraspecific variation in vulnerability in leaves and stems is adaptive and driven by aridity.We quantified leaf and stem vulnerability ofQuercus douglasiiusing the optical technique. To assess contributions of genetic variation and phenotypic plasticity to within‐species variation, we quantified the vulnerability of individuals growing in a common garden, but originating from populations along an aridity gradient, as well as individuals from the same wild populations.Intraspecific variation in water potential at which 50% of total embolism in a tissue is observed (P50) was explained mostly by differences between individuals (>66% of total variance) and tissues (16%). There was little between‐population variation in leaf/stem P50in the garden, which was not related to site of origin aridity. Unexpectedly, we observed a positive relationship between wild individual stem P50and aridity.Although there is no local adaptation and only minor phenotypic plasticity in leaf/stem vulnerability inQ. douglasii, high levels of potentially heritable variation within populations or strong environmental selection could contribute to adaptive responses under future climate change.more » « less
-
Abstract The ability to transport water through tall stems hydraulically limits stomatal conductance (gs), thereby constraining photosynthesis and growth. However, some plants are able to minimize this height‐related decrease ings, regardless of path length. We hypothesized that kudzu (Pueraria lobata) prevents strong declines ingswith height through appreciable structural and hydraulic compensative alterations. We observed only a 12% decline in maximumgsalong 15‐m‐long stems and were able to model this empirical trend. Increasing resistance with transport distance was not compensated by increasing sapwood‐to‐leaf‐area ratio. Compensating for increasing leaf area by adjusting the driving force would require water potential reaching −1.9 MPa, far below the wilting point (−1.2 MPa). The negative effect of stem length was compensated for by decreasing petiole hydraulic resistance and by increasing stem sapwood area and water storage, with capacitive discharge representing 8–12% of the water flux. In addition, large lateral (petiole, leaves) relative to axial hydraulic resistance helped improve water flow distribution to top leaves. These results indicate thatgsof distal leaves can be similar to that of basal leaves, provided that resistance is highest in petioles, and sufficient amounts of water storage can be used to subsidize the transpiration stream.more » « less
An official website of the United States government
