skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Hydraulic integrity of plant organs during drought stress and recovery in herbaceous and woody plant species
Abstract

The relationship between root, stem, and leaf hydraulic status and stomatal conductance during drought (field capacities: 100–25%) and drought recovery was studied in Helianthus annuus and five tree species (Populus×canadensis, Acer saccharum, A. saccharinum, Picea glauca, and Tsuga canadensis). Measurements of stomatal conductance (gs), organ water potential, and vessel embolism were performed and the following was observed: (i) cavitation only occurred in the petioles and not the roots or stems of tree species regardless of drought stress; (ii) in contrast, all H. annuus organs exhibited cavitation to an increasing degree from root to petiole; and (iii) all species initiated stomatal closure before cavitation events occurred or the expected turgor loss point was reached. After rewatering: (i) cavitated vessels in petioles of Acer species recovered whereas those of P. ×canadensis did not and leaves were shed; (ii) in H. annuus, cavitated xylem vessels were refilled in roots and petioles, but not in stems; and (iii) despite refilled embolisms in petioles of some species during drought recovery, gs never returned to pre-drought conditions. Conclusions are drawn with respect to the hydraulic segmentation hypothesis for above- and below-ground organs, and the timeline of embolism occurrence and repair is discussed.

 
more » « less
Award ID(s):
1719875
NSF-PAR ID:
10395385
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
74
Issue:
3
ISSN:
0022-0957
Format(s):
Medium: X Size: p. 1039-1058
Size(s):
["p. 1039-1058"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Shabala, Sergey (Ed.)
    Maintaining water transport in the xylem is critical for vascular plants to grow and survive. The drought-induced accumulation of embolism, when gas enters xylem conduits, causes declines in hydraulic conductance (K) and is ultimately lethal. Several methods can be used to estimate the degree of embolism in xylem, from measuring K in tissues to directly visualising embolism in conduits. One method allowing a direct quantification of embolised xylem area is the optical vulnerability (OV) technique. This method has been used across different organs and has a high spatial and temporal resolution. Here, we review studies using the OV technique, discuss the main advantages and disadvantages of this method, and summarise key advances arising from its use. Vulnerability curves generated by the OV method are regularly comparable to other methods, including the centrifuge and X-ray microtomography. A major advantage of the OV technique over other methods is that it can be simultaneously used to determine in situ embolism formation in leaves, stems and roots, in species spanning the phylogeny of land plants. The OV method has been used to experimentally investigate the spreading of embolism through xylem networks, associate embolism with downstream tissue death, and observe embolism formation in the field. 
    more » « less
  2. Abstract

    Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in threePinus radiataclones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction inKroot‐rcaused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease inKplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery ofKroot‐randgs. Our results demonstrated that the reduction inKplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleafas water stress started. We concluded that higherKplant‐lis associated with water stress resistance by sustaining a less negative Ψleafand delaying stomatal closure.

     
    more » « less
  3. Abstract

    Drought‐induced tree mortality is expected to increase in future climates with the potential for significant consequences to global carbon, water, and energy cycles. Xylem embolism can accumulate to lethal levels during drought, but species that can refill embolized xylem and recover hydraulic function may be able to avoid mortality. Yet the potential controls of embolism recovery, including cross‐biome patterns and plant traits such as nonstructural carbohydrates (NSCs), hydraulic traits, and nocturnal stomatal conductance, are unknown. We exposed eight plant species, originating from mesic (tropical and temperate) and semi‐arid environments, to drought under ambient and elevated CO2levels, and assessed recovery from embolism following rewatering. We found a positive association between xylem recovery and NSCs, and, surprisingly, a positive relationship between xylem recovery and nocturnal stomatal conductance. Arid‐zone species exhibited greater embolism recovery than mesic zone species. Our results indicate that nighttime stomatal conductance often assumed to be a wasteful use of water, may in fact be a key part of plant drought responses, and contribute to drought survival. Findings suggested distinct biome‐specific responses that partially depended on species climate‐of‐origin precipitation or aridity index, which allowed some species to recover from xylem embolism. These findings provide improved understanding required to predict the response of diverse plant communities to drought. Our results provide a framework for predicting future vegetation shifts in response to climate change.

     
    more » « less
  4. Abstract

    Recent findings suggest that tree mortality and post‐drought recovery of gas exchange can be predicted from loss of function within the water transport system. Understanding the susceptibility of plants to hydraulic damage requires knowledge about the vulnerability of different plant organs to stress‐induced hydraulic dysfunction. This is particularly important in the context of vulnerability segmentation between plant tissues which is believed to protect more energetically ‘costly’ tissues, such as woody stems, by sacrificing ‘cheaper’ leaves early under drought conditions.

    Differences in vulnerability segmentation between co‐occurring plant species could explain divergent behaviours during drought, yet there are few studies considering how this characteristic may vary within a plant community. Here we investigated community‐wide vulnerability segmentation by comparing leaf/shoot and stem vulnerability in all coexistent dominant canopy and understory woody species in a diverse dry sclerophyll woodland community, including multiple angiosperms and one gymnosperm.

    Previously published terminal leaf/shoot vulnerability to loss of water transport capacity was compared with stem xylem vulnerability to embolism measured on the same species at the same site. We calculated hydraulic safety margins for stems to determine variation in the risk of hydraulic failure during drought among species.

    The xylem of all species was found to be highly resistant to hydraulic dysfunction, with only two of the eight species exhibiting significantly different vulnerability to the overall mean. No evidence of vulnerability segmentation between shoots/leaves and stems was found in seven of the eight species.

    Phylogenetically diverse canopy and understory species in this evergreen sclerophyll woodland appear to have evolved similar strategies of drought resistance, including low xylem vulnerability to embolism and general lack of vulnerability segmentation. This convergence in hydraulic safety indicates a lack of hydraulic niche partitioning in this woodland community.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. Abstract

    Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.

     
    more » « less