skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2025

Title: Fault-Tolerant Quantum Computation Using Large Spin-Cat Codes
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code, analogous to the continuous-variable cat encoding. With this, we can correct the dominant error sources, namely processes that can be expressed as error operators that are linear or quadratic in the components of angular momentum. Such codes tailored to dominant error sources can exhibit superior thresholds and lower resource overheads when compared to those designed for unstructured noise models. A key component is the gate that preserves the rank of spherical tensor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a measurement-free error-correction scheme to address amplitude errors without relying on syndrome measurements. Through an in-depth analysis of logical gate errors, we establish that the fault-tolerant threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings. We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded in the nuclear spin of 87Sr, and show how to generate the universal gate set, including the rank-preserving gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.  more » « less
Award ID(s):
2237356
PAR ID:
10572893
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
PRX Quantum
Date Published:
Journal Name:
PRX Quantum
Volume:
5
Issue:
2
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hybridizing different degrees of freedom or physical platforms potentially offers various advantages in building scalable quantum architectures. Here, we introduce a fault-tolerant hybrid quantum computation by building on the advantages of both discrete-variable (DV) and continuous-variable (CV) systems. In particular, we define a CV-DV hybrid qubit with a bosonic cat code and a single photon, which is implementable in current photonic platforms. Due to the cat code encoded in the CV part, the predominant loss errors are readily correctable without multiqubit encoding, while the logical basis is inherently orthogonal due to the DV part. We design fault-tolerant architectures by concatenating hybrid qubits and an outer DV quantum error-correction code such as a topological code, exploring their potential merit in developing scalable quantum computation. We demonstrate by numerical simulations that our scheme is at least an order of magnitude more resource efficient compared to all previous proposals in photonic platforms, allowing us to achieve a record-high loss threshold among existing CV and hybrid approaches. We discuss the realization of our approach not only in all-photonic platforms but also in other hybrid platforms including superconducting and trapped-ion systems, which allows us to find various efficient routes toward fault-tolerant quantum computing. 
    more » « less
  2. The requirements for fault-tolerant quantum error correction can be simplified by leveraging structure in the noise of the underlying hardware. In this work, we identify a new type of structured noise motivated by neutral-atom qubits, biased erasure errors, which arises when qubit errors are dominated by detectable leakage from only one of the computational states of the qubit. We study the performance of this model using gate-level simulations of the XZZX surface code. Using the predicted erasure fraction and bias of metastable 171Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which is 1.9 times higher than the threshold for unbiased erasures and 7.5 times higher than the threshold for depolarizing errors. Surprisingly, the improved threshold is achieved without bias-preserving controlled-not gates and, instead, results from the lower noise entropy in this model. We also introduce an XZZX cluster state construction for measurement-based error correction, hybrid fusion, that is optimized for this noise model. By combining fusion operations and deterministic entangling gates, this construction preserves the intrinsic symmetry of the XZZX code, leading to a higher threshold of 10.3% and enabling the use of rectangular codes with fewer qubits. We discuss a potential physical implementation using a single plane of atoms and movable tweezers. 
    more » « less
  3. Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of path-independent quantum control. Using these building blocks, we construct a universal set of error-corrected gadgets that tolerate a single-photon loss and an arbitrary ancilla fault for four-legged cat qubits. Notably, our construction requires only dispersive coupling between bosonic modes and ancillae, as well as beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is comprised of only a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward scalable and robust quantum computation with bosonic qubits. 
    more » « less
  4. Abstract Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance fromd = 3 tod = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. 
    more » « less
  5. Abstract The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, the protocol increases the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system. 
    more » « less