skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Learning in Markov Games with Adaptive Adversaries: Policy Regret, Fundamental Barriers, and Efficient Algorithms
We study learning in a dynamically evolving environment modeled as a Markov game between a learner and a strategic opponent that can adapt to the learner’s strategies. While most existing works in Markov games focus on external regret as the learning objective, external regret becomes inadequate when the adversaries are adaptive. In this work, we focus on policy regret – a counterfactual notion that aims to compete with the return that would have been attained if the learner had followed the best fixed sequence of policy, in hindsight. We show that if the opponent has unbounded memory or if it is non-stationary, then sample-efficient learning is not possible. For memory-bounded and stationary adversaries, we show that learning is still statistically hard if the set of feasible strategies for the learner is exponentially large. To guarantee learnability, we introduce a new notion of consistent adaptive adversaries, wherein, the adversary responds similarly to similar strategies of the learner. We provide algorithms that achieve √ T policy regret against memorybounded, stationary, and consistent adversaries.  more » « less
Award ID(s):
1943251
PAR ID:
10572977
Author(s) / Creator(s):
;
Publisher / Repository:
38th Conference on Neural Information Processing Systems (NeurIPS 2024)
Date Published:
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider reinforcement learning (RL) in episodic MDPs with adversarial full-information reward feedback and unknown fixed transition kernels. We propose two model-free policy optimization algorithms, POWER and POWER++, and establish guarantees for their dynamic regret. Compared with the classical notion of static regret, dynamic regret is a stronger notion as it explicitly accounts for the non-stationarity of environments. The dynamic regret attained by the proposed algorithms interpolates between different regimes of non-stationarity, and moreover satisfies a notion of adaptive (near-)optimality, in the sense that it matches the (near-)optimal static regret under slow-changing environments. The dynamic regret bound features two components, one arising from exploration, which deals with the uncertainty of transition kernels, and the other arising from adaptation, which deals with non-stationary environments. Specifically, we show that POWER++ improves over POWER on the second component of the dynamic regret by actively adapting to non-stationarity through prediction. To the best of our knowledge, our work is the first dynamic regret analysis of model-free RL algorithms in non-stationary environments. 
    more » « less
  2. This paper provides a finite-sample analysis of a passive stochastic gradient Langevin dynamics (PSGLD) algo- rithm. This algorithm is designed to achieve adaptive inverse reinforcement learning (IRL). Adaptive IRL aims to estimate the cost function of a forward learner performing a stochastic gradient algorithm (e.g., policy gradient reinforcement learning) by observing their estimates in real-time. The PSGLD algorithm is considered passive because it incorporates noisy gradients provided by an external stochastic gradient algorithm (forward learner), of which it has no control. The PSGLD algorithm acts as a randomized sampler to achieve adaptive IRL by reconstructing the forward learner’s cost function nonparametrically from the stationary measure of a Langevin diffusion. This paper analyzes the non-asymptotic (finite-sample) performance; we provide explicit bounds on the 2-Wasserstein distance between PSGLD algorithm sample measure and the stationary measure encoding the cost function, and provide guarantees for a kernel density estimation scheme which reconstructs the cost function from empirical samples. Our analysis uses tools from the study of Markov diffusion operators. The derived bounds have both practical and theoretical significance. They provide finite-time guarantees for an adaptive IRL mechanism, and substantially generalize the analytical framework of a line of research in passive stochastic gradient algorithms. 
    more » « less
  3. We provide the first sub-linear space and sub-linear regret algorithm for online learning with expert advice (against an oblivious adversary), addressing an open question raised recently by Srinivas, Woodruff, Xu and Zhou (STOC 2022). We also demonstrate a separation between oblivious and (strong) adaptive adversaries by proving a linear memory lower bound of any sub-linear regret algorithm against an adaptive adversary. Our algorithm is based on a novel pool selection procedure that bypasses the traditional wisdom of leader selection for online learning, and a generic reduction that transforms any weakly sub-linear regret o(T) algorithm to T1-α regret algorithm, which may be of independent interest. Our lower bound utilizes the connection of no-regret learning and equilibrium computation in zero-sum games, leading to a proof of a strong lower bound against an adaptive adversary. 
    more » « less
  4. null (Ed.)
    We consider the framework of non-stationary stochastic optimization (Besbes et al., 2015) with squared error losses and noisy gradient feedback where the dynamic regret of an online learner against a time varying comparator sequence is studied. Motivated from the theory of non-parametric regression, we introduce a new variational constraint that enforces the comparator sequence to belong to a discrete k^{th} order Total Variation ball of radius C_n. This variational constraint models comparators that have piece-wise polynomial structure which has many relevant practical applications (Tibshirani, 2014). By establishing connections to the theory of wavelet based non-parametric regression, we design a polynomial time algorithm that achieves the nearly optimal dynamic regret of ~O(n^{1/(2k+3)} C_n^{2/(2k+3)}). The proposed policy is adaptive to the unknown radius C_n. Further, we show that the same policy is minimax optimal for several other non-parametric families of interest. 
    more » « less
  5. We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve O(∆^1/4 T^3/4) regret when the degree of nonstationarity, as measured by total variation ∆, is known, and O(∆^1/5 T^4/5) regret when ∆ is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria. 
    more » « less