skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distinct Composition‐Dependent Topological Hall Effect in Mn 2‐x Zn x Sb
Abstract Spintronics, an evolving interdisciplinary field at the intersection of magnetism and electronics, explores innovative applications of electron charge and spin properties for advanced electronic devices. The topological Hall effect (THE), a key component in spintronics, has gained significance due to emerging theories surrounding noncoplanar chiral spin textures. This study focuses on Mn2‐xZnxSb, a material crystalizing in centrosymmetric space group with rich magnetic phases tunable by Zn contents. Through comprehensive magnetic and transport characterizations, we found that the high‐Zn (x > 0.6) samples display THE which is enhanced with decreasing temperature, while THE in the low‐Zn (x < 0.6) samples show an opposite trend. The coexistence of those distinct temperature dependencies for THE suggests very different magnetic interactions/structures for different compositions and underscores the strong coupling between magnetism and transport in Mn2‐xZnxSb. The findings contribute to understanding topological magnetism in centrosymmetric tetragonal lattices, establishing Mn2‐xZnxSb as a unique platform for exploring tunable transport effects and opening avenues for further exploration in the realm of spintronics.  more » « less
Award ID(s):
2238254
PAR ID:
10573038
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Advanced Physics Research
Date Published:
Journal Name:
Advanced Physics Research
ISSN:
2751-1200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Topological magnetism typically appears in noncentrosymmetric compounds or compounds with geometric frustration. Here, we report the effective tuning of magnetism in centrosymmetric tetragonal Mn2−xZnxSb by Zn substitution. The magnetism is found to be closely coupled to the transport properties, giving rise to a very large topological Hall effect with fine-tuning of Zn content, which even persists to high temperature (∼250K). The further magnetoentropic analysis suggests that the topological Hall effect is possibly associated with topological magnetism. Our finding suggests Mn2−xZnxSb is a candidate material for a centrosymmetric tetragonal topological magnetic system, offering opportunities for studying and tuning spin textures and developing near room temperature spin-based devices. 
    more » « less
  2. Abstract A new cage-structured compound—HfMn2Zn20—belonging to theAB2C20 (A, B= transition or rare earth metals, andC= Al, Zn, or Cd) family of structures has been synthesized via the self-flux method. The new compound crystallizes in the space group F d 3 ¯ m with lattice parameter a≈14.0543(2) Å (Z= 8) and exhibits non-stoichiometry due to Mn/Zn mixing on the Mn-site and an underoccupied Hf-site. The structure refines to Hf0.93Mn1.63Zn20.37and follows lattice size trends when compared to other HfM2Zn20(M= Fe, Co, and Ni) structures. The magnetic measurements show that this compound displays a modified Curie-Weiss behavior with a transition temperature around 22 K. The magnetization shows no saturation, a small magnetic moment, and near negligible hysteresis, all signs of itinerant magnetism. The Rhodes–Wohlfarth ratio and the spin fluctuation parameters ratio both confirm the itinerant nature of the magnetism in HfMn2Zn20
    more » « less
  3. Abstract We study the effect of strain on the magnetic properties and magnetization configurations in nanogranular FexGe 1 x films ( x = 0.53 ± 0.05 ) with and without B20 FeGe nanocrystals surrounded by an amorphous structure. Relaxed films on amorphous silicon nitride membranes reveal a disordered skyrmion phase while films near and on top of a rigid substrate favor ferromagnetism and an anisotropic hybridization of Fedlevels and spin-polarized Gespband states. The weakly coupled topological states emerge at room temperature and become more abundant at cryogenic temperatures without showing indications of pinning at defects or confinement to individual grains. These results demonstrate the possibility to control magnetic exchange and topological magnetism by strain and inform magnetoelasticity-mediated voltage control of topological phases in amorphous quantum materials. 
    more » « less
  4. Abstract Recent developments in 2D magnetic materials have motivated the search for new van der Waals magnetic materials, especially Ising‐type magnets with strong magnetic anisotropy. Fe‐basedMPX3(M= transition metal,X= chalcogen) compounds such as FePS3and FePSe3both exhibit an Ising‐type magnetic order, but FePSe3receives much less attention compared to FePS3. This work focuses on establishing the strategy to engineer magnetic anisotropy and exchange interactions in this less‐explored compound. Through chalcogen and metal substitutions, the magnetic anisotropy is found to be immune against S substitution for Se whereas tunable only with heavy Mn substitution for Fe. In particular, Mn substitution leads to a continuous rotation of magnetic moments from the out‐of‐plane direction toward the in‐plane. Furthermore, the magnetic ordering temperature displays non‐monotonic doping dependence for both chalcogen and metal substitutions but due to different mechanisms. These findings provide deeper insight into the Ising‐type magnetism in this important van der Waals material, shedding light on the study of other Ising‐type magnetic systems as well as discovering novel 2D magnets for potential applications in spintronics. 
    more » « less
  5. Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications. 
    more » « less