Abstract In the mountainous headwaters of the Colorado River episodic dust deposition from adjacent arid and disturbed landscapes darkens snow and accelerates snowmelt, impacting basin hydrology. Patterns and impacts across the heterogenous landscape cannot be inferred from current in situ observations. To fill this gap daily remotely sensed retrievals of radiative forcing and contribution to melt were analyzed over the MODIS period of record (2001–2023) to quantify spatiotemporal impacts of snow darkening. Each season radiative forcing magnitudes were lowest in early spring and intensified as snowmelt progressed, with interannual variability in timing and magnitude of peak impact. Over the full record, radiative forcing was elevated in the first decade relative to the last decade. Snowmelt was accelerated in all years and impacts were most intense in the central to southern headwaters. The spatiotemporal patterns motivate further study to understand controls on variability and related perturbations to snow water resources.
more »
« less
Two Decades of Dust Radiative Forcing on Snow Cover Across the Great Salt Lake Basin
Abstract Seasonal snowpacks in mountain drainages of the Great Salt Lake Basin (GSLB), western United States, are the primary surface water supply to regional agriculture, the metropolitan Wasatch Front, and the terminal Great Salt Lake. Spring dust emissions from the eastern Great Basin result in a dust‐darkened GSLB snowpack, locally accelerating snowmelt relative to dust‐free conditions. Such acceleration has been linked to streamflow forecasting errors in the adjacent Colorado River Basin, but snow darkening impacts within the GSLB are largely uninvestigated. To quantify the dust impact, we analyzed patterns in dust radiative forcing (RFdust) over the MODIS record (2001–2023) using spatially and temporally complete RFdustand fractional snow‐covered area products. For validation, retrievals were cross‐referenced with in situ RFdustobservations. Results showed that RFdustwas present every year and had no significant trend over the record. Spatially, RFdustwas similar across all three subbasins. Temporally, RFdustexhibited high interannual variability (−30 to +40 Wm−2from record means) and has declined slightly in regions of the eastern GSLB. Controls of RFdustmay be linked to seasonal meteorology and drought conditions, but drivers remain uncertain. Further understanding of the distribution and controls of RFdustin the GSLB during changing climate and weather patterns may allow us to predict snowmelt more accurately.
more »
« less
- Award ID(s):
- 2012091
- PAR ID:
- 10573088
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Earth Surface
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-9003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Laurentian Great Lakes (hereafter the Great Lakes) comprise the world’s largest surface freshwater system. Over the past two decades, water levels in the Great Lakes have fluctuated drastically, reaching both record highs and lows. Accurate water level forecasting is critical due to the extensive ecosystem and millions of US and Canadian citizens that rely on this valuable resource. One of the most dominant variables for water supply in any freshwater system is surface runoff, which is directly impacted by precipitation amount, type, magnitude, and timing across the system’s land surfaces. Lake Superior, the most upstream of the Great Lakes, receives the greatest amount of seasonal snowfall annually out of all the great Lakes. This snowfall affects both the timing and quantity of runoff into the Great Lakes system and impacts the water supply of the Great Lakes. In this study, I analyzed the patterns of snow water equivalent and its effect on surface runoff in the Lake Superior basin. My results indicate important changes in snow water equivalent and runoff patterns over time. Specifically, I found that, as of 1971, maximum seasonal snow water equivalent is occurring on average 12 days earlier in the spring season. I also found that maximum seasonal runoff is occurring earlier; however, the change in the timing of peak runoff occurred in 1983 and is found to now be on average 11 days earlier than it was before 1983. By advancing an understanding of these relationships and ensuring they are reflected in state-of-the-art modeling systems, I provided critical information for improving the skill of water level forecasts and preparing water managers and communities for future hydrologic changes, including those associated with climate change.more » « less
-
The Yukon River basin encompasses over 832,000 km2 of boreal Arctic Alaska and northwest Canada, providing a major transportation corridor and multiple natural resources to regional communities. The river seasonal hydrology is defined by a long winter frozen season and a snowmelt-driven spring flood pulse. Capabilities for accurate monitoring and forecasting of the annual spring freshet and river ice breakup (RIB) in the Yukon and other northern rivers is limited, but critical for understanding hydrologic processes related to snow, and for assessing flood-related risks to regional communities. We developed a regional snow phenology record using satellite passive microwave remote sensing to elucidate interactions between the timing of upland snowmelt and the downstream spring flood pulse and RIB in the Yukon. The seasonal snow metrics included annual Main Melt Onset Date (MMOD), Snowoff (SO) and Snowmelt Duration (SMD) derived from multifrequency (18.7 and 36.5 GHz) daily brightness temperatures and a physically-based Gradient Ratio Polarization (GRP) retrieval algorithm. The resulting snow phenology record extends over a 29-year period (1988–2016) with 6.25 km grid resolution. The MMOD retrievals showed good agreement with similar snow metrics derived from in situ weather station measurements of snowpack water equivalence (r = 0.48, bias = −3.63 days) and surface air temperatures (r = 0.69, bias = 1 day). The MMOD and SO impact on the spring freshet was investigated by comparing areal quantiles of the remotely sensed snow metrics with measured streamflow quantiles over selected sub-basins. The SO 50% quantile showed the strongest (p < 0.1) correspondence with the measured spring flood pulse at Stevens Village (r = 0.71) and Pilot (r = 0.63) river gaging stations, representing two major Yukon sub-basins. MMOD quantiles indicating 20% and 50% of a catchment under active snowmelt corresponded favorably with downstream RIB (r = 0.61) from 19 river observation stations spanning a range of Yukon sub-basins; these results also revealed a 14–27 day lag between MMOD and subsequent RIB. Together, the satellite based MMOD and SO metrics show potential value for regional monitoring and forecasting of the spring flood pulse and RIB timing in the Yukon and other boreal Arctic basins.more » « less
-
Abstract The seasonal controls of hydrology, temperature, hypoxia, and biogeochemical conditions for groundwater ammonium–N (NH4+) concentrations are not well understood. Here we investigated these controls for riparian groundwaters located upstream of two milldams over a period of 4 years. Groundwater chemistry was sampled monthly while groundwater elevations, hydraulic gradients, and temperatures were recorded sub‐hourly. Distinct seasonal patterns for NH4+were observed which differed among the wells. For wells that displayed a strong seasonal pattern, NH4+concentrations increased through the summer and peaked in October–November. These elevated concentrations were attributed to ammonification, suppression of nitrification, and/or dissimilatory nitrate reduction to ammonium (DNRA). These processes were driven by high groundwater temperatures, low hydraulic gradients (or long residence times), hypoxic/anoxic groundwater conditions, and increased availability of dissolved organic carbon as an electron donor. In contrast, NH4+concentrations decreased in the riparian groundwater from January to April during cool and wet conditions. A groundwater well with elevated total dissolved iron (TdFe) concentrations had elevated NH4+concentrations but displayed a muted seasonal response. In addition to hydrologic controls, we attributed this response to additional NH4+contribution from Fe‐driven autotrophic DNRA and/or ammonification linked to dissimilatory Fe reduction. Understanding the temporal patterns and factors controlling NH4+in riparian groundwaters is important for making appropriate watershed management decisions and implementing appropriate best management practices.more » « less
-
Abstract The 2085 km2Jordan River Basin, and its seven sub‐catchments draining the Central Wasatch Range immediately east of Salt Lake City, UT, are home to an array of hydrologic, atmospheric, climatic and chemical research infrastructure that collectively forms the Wasatch Environmental Observatory (WEO). WEO is geographically nested within a wildland to urban land‐use gradient and built upon a strong foundation of over a century of discharge and climate records. A 2200 m gradient in elevation results in variable precipitation, temperature and vegetation patterns. Soil and subsurface structure reflect systematic variation in geology from granitic, intrusive to mixed sedimentary clastic across headwater catchments, all draining to the alluvial or colluvial sediments of the former Lake Bonneville. Winter snowfall and spring snowmelt control annual hydroclimate, rapid population growth dominates geographic change in lower elevations and urban gas and particle emissions contribute to episodes of severe air pollution in this closed‐basin. Long‐term hydroclimate observations across this diverse landscape provide the foundation for an expanding network of infrastructure in both montane and urban landscapes. Current infrastructure supports both basic and applied research in atmospheric chemistry, biogeochemistry, climate, ecology, hydrology, meteorology, resource management and urban redesign that is augmented through strong partnerships with cooperating agencies. These features allow WEO to serve as a unique natural laboratory for addressing research questions facing seasonally snow‐covered, semi‐arid regions in a rapidly changing world and an excellent facility for providing student education and research training.more » « less
An official website of the United States government
